Hong-Bin Shen

Learn More
Given an uncharacterized protein sequence, how can we identify whether it is a membrane protein or not? If it is, which membrane protein type it belongs to? These questions are important because they are closely relevant to the biological function of the query protein and to its interaction process with other molecules in a biological system. Particularly,(More)
Information on subcellular localization of proteins is important to molecular cell biology, proteomics, system biology and drug discovery. To provide the vast majority of experimental scientists with a user-friendly tool in these areas, we present a package of Web servers developed recently by hybridizing the 'higher level' approach with the ab initio(More)
One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from(More)
Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately(More)
Predicting subcellular localization of human proteins is a challenging problem, especially when unknown query proteins do not have significant homology to proteins of known subcellular locations and when more locations need to be covered. To tackle the challenge, protein samples are expressed by hybridizing the gene ontology (GO) database and amphiphilic(More)
One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing(More)
Facing the explosion of newly generated protein sequences in the post genomic era, we are challenged to develop an automated method for fast and reliably annotating their subcellular locations. Knowledge of subcellular locations of proteins can provide useful hints for revealing their functions and understanding how they interact with each other in cellular(More)
We have developed an automated method for predicting signal peptide sequences and their cleavage sites in eukaryotic and bacterial protein sequences. It is a 2-layer predictor: the 1st-layer prediction engine is to identify a query protein as secretory or non-secretory; if it is secretory, the process will be automatically continued with the 2nd-layer(More)