Learn More
Homeobox genes encode transcription factors that control cell differentiation and play essential roles in developmental patterning. Increasing evidence indicates that many homeobox genes are aberrantly expressed in cancers, and that their deregulation significantly contributes to tumor progression. The homeobox gene HOXA10 controls uterine organogenesis(More)
Constitutive activation of the Janus-activated kinase/signal transducer and activator of transcription (STAT) pathway promotes the proliferation and survival of cancer cells in culture and is associated with various cancers, including those of the ovary. We found that constitutively activated STAT3 levels correlated with aggressive clinical behavior of(More)
Epithelial ovarian cancer (EOC) is a lethal disease that frequently involves the peritoneal cavity. Dissemination of EOC is a multi-step process in which exfoliated tumor cells survive in the peritoneal fluid as multi-cellular aggregates and then form invasive implants on peritoneal surfaces. The mechanisms that control this process are poorly understood.(More)
A growing body of evidence indicates that individual ribosomal proteins and changes in their expression, participate in, and modulate, a variety of cellular activities. Our earlier studies have found that apoptosis could be induced by inhibiting expression of ribosomal protein S3a (RPS3a) in many tumor cells which constitutively express RPS3a at levels much(More)
The antiproliferative activity of transforming growth factor-β (TGF-β) is essential for maintaining normal tissue homeostasis and is lost in many types of tumors. Gene responses that are central to the TGF-β cytostatic program include activation of the cyclin-dependent kinase inhibitors, p15(Ink4B) and p21(WAF1/Cip1), and repression of c-myc. These gene(More)
PURPOSE A critical step of protein synthesis involves the liberation of the mRNA cap-binding translation initiation factor eIF4E from 4EBP inhibitory binding proteins, and its engagement to the scaffolding protein eIF4G. eIF4E is a candidate target for cancer therapy because it is overexpressed or activated in many types of tumors and has tumorigenic(More)
UNLABELLED More than 60% of patients who are diagnosed with epithelial ovarian cancer (EOC) present with extensive peritoneal carcinomatosis. EOC cells typically disseminate by shedding into the peritoneal fluid in which they survive as multicellular aggregates and then implant onto peritoneal surfaces. However, the mechanism that facilitates aggregation(More)
The ovarian surface epithelium (OSE) origin of ovarian cancers has been controversial because these cancers often exhibit Müllerian-like features. One hypothesis is that ovarian neoplasia involves the gain of growth advantages by OSE cells via activation of Müllerian programs. The homeobox gene HOXA10 controls formation of the uterus from the Müllerian(More)
Homeobox genes encode transcription factors that control patterning of virtually all organ systems including the vasculature. Tumor angiogenesis is stimulated by several homeobox genes that are overexpressed in tumor cells, but the mechanisms of these genes are poorly understood. In this study, we investigated the mechanisms by which DLX4, a homeobox gene(More)
Border cell migration is a process that occurs during Drosophila ovarian development in which cells derived from a simple epithelium migrate and invade neighboring tissue. This process resembles the behavior of cancerous cells that derive from the simple epithelium of the human ovary. One important regulator of border cell migration is Taiman, a homolog of(More)