Hon Tat Hui

Learn More
—Random beamforming (RBF) is a practically favourable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the(More)
A new concept of using a stacked phased coil array to increase the signal-to-circuit noise ratio (SCNR) in magnetic resonance imaging (MRI) is introduced. Unlike conventional phased coil arrays, the proposed stacked phased coil array is constructed by stacking the coil elements closely together in the vertical direction. Through a proper combination of the(More)
A new method is introduced to increase the signal-to-noise ratio (SNR) in low-field magnetic resonance imaging (MRI) systems by using a vertically stacked phased coil array. It is shown theoretically that the SNR is increased with the square root of the number of coils in the array if the array signals are properly combined to remove the mutual coupling(More)
The random beamforming (RBF) scheme, jointly applied with multiuser diversity based scheduling, is able to achieve virtually interference-free downlink transmissions with only partial channel state information (CSI) available at the transmitter. However, the impact of receive spatial diversity on the rate performance of RBF is not fully characterized yet(More)
A multilayered surface coil array for magnetic resonance imaging with an improved signal-to-noise ratio (SNR) performance is introduced and investigated by a simulation study. By using an effective decoupling method, the strong mutual coupling effect between the coil layers can be accurately removed, leading to a coherent combination of the signals of the(More)