Learn More
17-Beta-estradiol (E2) is a steroid hormone involved in numerous brain functions. E2 regulates synaptic plasticity in part by enhancing NMDA receptor function and spine density in the hippocampus, resulting in increased long-term potentiation and facilitation of learning and memory. As the calcium-dependent neutral protease, calpain, is also involved in(More)
Angelman syndrome (AS) is a neurodevelopmental disorder largely due to abnormal maternal expression of the UBE3A gene leading to the deletion of E6-associated protein. AS subjects have severe cognitive impairments for which there are no therapeutic interventions. Mouse models (knockouts of the maternal Ube3a gene: 'AS mice') of the disorder have substantial(More)
17-␤-Estradiol (E2) is a steroid hormone involved in numerous brain functions. E2 regulates synaptic plasticity in part by enhancing NMDA receptor function and spine density in the hippocampus, resulting in increased long-term potentiation and facilitation of learning and memory. As the calcium-dependent neutral protease, calpain, is also involved in these(More)
Gliomablastoma multiforme (GBM) is the most aggressive of brain cancers in humans. Response to current therapies remains extremely poor, with dismal survival statistics. Recently, the endoplasmic reticulum UDPase, ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), was identified as a key component in the Akt/phosphatidylinositol 3-kinase/phosphatase(More)
In the central nervous system, two calpain isoforms are highly expressed: calpain1 and calpain2. Here, we show for the first time that activation of the calpain isoform, calpain2, is a necessary event in hippocampal synaptic plasticity and in learning and memory. We developed a fluorescence resonance energy transfer–based animal model to monitor in vivo(More)
Current methods to monitor cellular ATP do not provide spatial or temporal localization of ATP in single cells in real time or they display imperfect specificity to ATP. Here, we have developed a single cell, Enhanced Acceptor Fluorescence (EAF)-based ATP biosensor to visualize ATP in real time. This biosensor utilizes a modified mimic of the ε-subunits of(More)
  • 1