Learn More
BACKGROUND Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible(More)
BACKGROUND Numerous attempts have been made to improve xylose utilization in Z. mobilis including adaptive approaches. However, no one has yet found a way to overcome the reduced xylose utilization observed in fermentations carried out in the presence of glucose as well as the inhibitory compounds found within pretreated and saccharified biomass. Our goal(More)
(TB) is endemic in white-tailed deer (Odocoileus virginianus) in the northeastern portion of Michigan's Lower Peninsula. Bovine TB in deer and cattle has created immense fi nancial consequences for the livestock industry and hunting public. Surveillance identifi ed coyotes (Canis latrans) as potential bio-accumulators of Mycobacterium bovis, a fi nding that(More)
BACKGROUND Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream(More)
BACKGROUND Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to 'hydrolysate toxicity,' a major problem for microorganisms to(More)
  • 1