Learn More
The sarcoplasmic reticulum (SR) is central to intracellular Ca 2+ regulation during excitation–contraction (E-C) coupling in mammalian cardiac tissue. The importance of the SR to E-C coupling in lower vertebrates is less certain. This uncertainty can be attributed, in part, to the temperature-dependency of the SR Ca 2+-release channel and to interspecific(More)
Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac(More)
CTLA-4 is expressed on T cells after activation and shares homology with the CD28 costimulatory receptor. In contrast to CD28, CTLA-4 is thought to be a negative regulator of T cell activation. Cross-linking of CTLA-4 during activation of peripheral T cells reduces IL-2 production and arrests T cells in G1. Much less is known about the function of CTLA-4 in(More)
The zebrafish is widely used for human related disease studies. Surprisingly, there is no information about the electrical activity of single myocytes freshly isolated from adult zebrafish ventricle. In this study, we present an enzymatic method to isolate ventricular myocytes from zebrafish heart that yield a large number of calcium tolerant cells.(More)
Rainbow trout remain active in waters that seasonally change between 4°C and 20°C. To explore how these fish are able to maintain cardiac function over this temperature range we characterized changes in cardiac morphology, contractile function, and the expression of contractile proteins in trout following acclimation to 4°C (cold), 12°C (control), and 17°C(More)
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface(More)
During vertebrate evolution there has been a shift in the way in which the heart varies cardiac output (the product of heart rate and stroke volume). While mammals, birds, and amphibians increase cardiac output through large increases in heart rate and only modest increases (approximately 30%) in stroke volume, fish and some reptiles use modest increases in(More)
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca(2+) delivery is enhanced in myocytes from tuna compared with those from other(More)
The sarcoplasmic reticulum (SR) is crucial for contraction and relaxation of the mammalian cardiomyocyte, but its role in other vertebrate classes is equivocal. Recent evidence suggests differences in SR function across species may have an underlying structural basis. Here, we discuss how SR recruitment relates to the structural organization of the(More)
Chronic pressure or volume overload can cause the vertebrate heart to remodel. The hearts of fish remodel in response to seasonal temperature change. Here we focus on the passive properties of the fish heart. Building upon our previous work on thermal-remodeling of the rainbow trout ventricle, we hypothesized that chronic cooling would initiate fibrotic(More)