Learn More
Ground water of both terrestrial and marine origin flows into coastal surface waters as submarine groundwater discharge, and constitutes an important source of nutrients, contaminants and trace elements to the coastal ocean. Large saline discharges have been observed by direct measurements and inferred from geochemical tracers, but sufficient seawater(More)
Over the past few decades, groundwater wells installed in rural areas throughout the major river basins draining the Himalayas have become the main source of drinking water for tens of millions of people. Groundwater in this region is much less likely to contain microbial pathogens than surface water but often contains hazardous amounts of arsenic--a known(More)
Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (<100 m) depths by domestic and irrigation wells in the Bengal Basin aquifer system. The government of Bangladesh has begun to install wells to depths of >150 m(More)
Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has(More)
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of(More)
  • 1