#### Filter Results:

#### Publication Year

2003

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

- Holger Rauhut
- 2009

These notes give a mathematical introduction to compressive sensing focusing on recovery using 1-minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate… (More)

This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the… (More)

—In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relaxation based on a mixed matrix norm. Typically, worst-case… (More)

Vector valued data appearing in concrete applications often possess sparse expansions with respect to a preassigned frame for each vector component individually. Additionally, different components may also exhibit common sparsity patterns. Recently, there were introduced sparsity measures that take into account such joint sparsity patterns, promoting… (More)

We present a new bound for suprema of a special type of chaos processes indexed by a set of matrices, which is based on a chaining method. As applications we show significantly improved estimates for the restricted isometry constants of partial random circulant matrices and time-frequency structured random matrices. In both cases the required condition on… (More)

We investigate the problem of reconstructing sparse multivariate trigonometric polyno-mials from few randomly taken samples by Basis Pursuit and greedy algorithms such as Orthogonal Matching Pursuit (OMP) and Thresholding. While recovery by Basis Pursuit has recently been studied by several authors, we provide theoretical results on the success probability… (More)

We present and analyze an efficient implementation of an iteratively reweighted least squares algorithm for recovering a matrix from a small number of linear measurements. The algorithm is designed for the simultaneous promotion of both a minimal nuclear norm and an approximatively low-rank solution. Under the assumption that the linear measurements fulfill… (More)

In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of… (More)