Learn More
In this paper a lattice model for the diffusional transport of particles in the interphase cell nucleus is proposed. The dynamical behavior of single chains on the lattice is investigated and Rouse scaling is verified. Dynamical dense networks are created by a combined version of the bond fluctuation method and a Metropolis Monte Carlo algorithm. Semidilute(More)
We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock(More)
The diffusion-controlled limit of reaction times for site-specific DNA-binding proteins is derived from first principles. We follow the generally accepted concept that a protein propagates via two competitive modes, a three-dimensional diffusion in space and a one-dimensional sliding along the DNA. However, our theoretical treatment of the problem is new.(More)
The recently introduced method of excess collisions to estimate reaction times of protein-DNA systems in the presence of facilitated diffusion ("sliding") requires a cell of full system size. This bottleneck is avoided with a modification, by which a set of empirical parameters is calibrated using numerical simulations of a small test system. Once this is(More)
An important contribution to today's computer-aided drug design is the automated screening of large compound databases against structurally resolved protein receptors targets. The introduction of ligand flexibility has, by now, become a standardized procedure. In contrast, a general approach to treat target degrees of freedom is still to be found, a(More)
Using a cascadic version of the stochastic tunneling method we perform an all-atom database screen over 186,000 flexible ligands of the NCI 3D database against the thymidine kinase receptor. By analyzing the errors in the binding energy we demonstrate how the cascadic technique is superior to conventional sequential docking techniques and how reliable(More)
Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above.(More)
In this paper a lattice model for the diffusional transport of particles in the interphase cell nucleus is proposed. Dense networks of chromatin fibers are created by three different methods: Randomly distributed, noninterconnected obstacles, a random walk chain model, and a self-avoiding random walk chain model with persistence length. By comparing a(More)
In this paper, a lattice model for the diffusional transport of chromatin-binding particles in the interphase cell nucleus is proposed. Sliding effects are studied in dense networks of chromatin fibers created by three different methods: Randomly distributed, noninterconnected obstacles, a random walk chain model with an attractive step potential, and a(More)