Learn More
In mammals, circadian oscillators reside not only in the suprachiasmatic nucleus of the brain, which harbors the central pacemaker, but also in most peripheral tissues. Here, we show that the glucocorticoid hormone analog dexamethasone induces circadian gene expression in cultured rat-1 fibroblasts and transiently changes the phase of circadian gene(More)
Transcriptional regulation by the glucocorticoid receptor (GR) is essential for survival. Since the GR can influence transcription both through DNA-binding-dependent and -independent mechanisms, we attempted to assess their relative importance in vivo. In order to separate these modes of action, we introduced the point mutation A458T into the GR by gene(More)
Activation of central glucocorticoid receptors caused by the stress that is associated with a learning task facilitates storage of the acquired information. The molecular mechanism underlying this phenomenon is entirely unknown. Glucocorticoid receptors can influence transcription both through DNA binding-dependent and -independent mechanisms. To assess the(More)
Glucocorticoids are secreted from the adrenal gland in very high amounts after stress. In the brain, these stress hormones potently modulate ionic currents, monoaminergic transmission, synaptic plasticity and cellular viability, most notably in the hippocampus where corticosteroid receptors are highly enriched. Here we show that at least some of these(More)
Glucocorticoids (GCs) are involved in the modulation of macrophage function and thereby control the host's immune responses to pathogens. However, neither the role of hormone concentration nor the differential contribution of the glucocorticoid (GR) and the mineralocorticoid receptors (MR) to these activities are known. Here we show that low levels of(More)
Corticosteroid action in the brain is mediated by the mineralocorticoid (MR) and the glucocorticoid (GR) receptor. Disturbances in MR- and GR-mediated effects are thought to impair cognition, behavior, and endocrine control. To assess the function of the limbic MR in these processes, we inactivated the MR gene in the forebrain of the mouse using the(More)
Glucocorticoids (GCs) are a class of steroid hormones which regulate a variety of essential biological functions. The profound anti-inflammatory and immunosuppressive activity of synthetic GCs, combined with their power to induce lymphocyte apoptosis place them among the most commonly prescribed drugs worldwide. Endogenous GCs also exert a wide range of(More)
Upon hormone binding, the activated glucocorticoid receptor (GR) functions as a transcription factor via different modes of action to control gene expression. Recent gene-targeting studies in mice provide new insight into the role of GR in vivo and are helping decipher the molecular mechanisms underlying its actions.
Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact(More)
The glucocorticoid receptor (GR) coordinates a multitude of physiological responses in vivo. In vitro, glucocorticoids are required for sustained proliferation of erythroid progenitors (ebls). Here, we analyze the impact of the GR on erythropoiesis in vivo, using GR-deficient mice or mice expressing a GR defective for transactivation. In vitro, sustained(More)