Holger K . Eltzschig

Learn More
From the Department of Anesthesiology, University of Colorado Denver, Aurora (H.K.E.); the Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany (H.K.E.); and Vesalius Research Center VIB, and Vesalius Research Center, K.U. Leuven — both in Leuven, Belgium (P.C.). Address reprint requests to Dr. Eltzschig(More)
Ischemia and reperfusion–elicited tissue injury contributes to morbidity and mortality in a wide range of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Ischemia-reperfusion injury is also a major challenge during organ transplantation and cardiothoracic,(More)
Under conditions of limited oxygen availability (hypoxia), multiple cell types release adenine nucleotides in the form of ATP, ADP, and AMP. Extracellular AMP is metabolized to adenosine by surface-expressed ecto-5'-nucleotidase (CD73) and subsequently activates surface adenosine receptors regulating endothelial and epithelial barrier function. Therefore,(More)
Limited oxygen delivery to tissues (hypoxia) is common in a variety of disease states. A number of parallels exist between hypoxia and acute inflammation, including the observation that both influence vascular permeability. As such, we compared the functional influence of activated polymorphonuclear leukocytes (PMN) on normoxic and posthypoxic endothelial(More)
Extracellular adenosine has been widely implicated in adaptive responses to hypoxia. The generation of extracellular adenosine involves phosphohydrolysis of adenine nucleotide intermediates, and is regulated by the terminal enzymatic step catalyzed by ecto-5'-nucleotidase (CD73). Guided by previous work indicating that hypoxia-induced vascular leakage is,(More)
Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl(More)
To the Editor: In their review article, Eltzschig et al. (Dec. 13 issue)1 discuss a number of new concepts regarding purinergic signaling in ischemia and reperfusion, acute lung injury, and inflammatory bowel disease. However, a drawback is the lack of any message about purinergic signaling in acute gouty arthritis, one of the most common inflammatory(More)
The neuronal guidance molecule netrin-1 is linked to the coordination of inflammatory responses. Given that mucosal surfaces are particularly prone to hypoxia-elicited inflammation, we sought to determine the function of netrin-1 in hypoxia-induced inflammation. We detected hypoxia-inducible factor 1α (HIF-1α)-dependent induction of expression of the gene(More)
Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of(More)
Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface(More)