Learn More
Bacterial cell walls contain lipoproteins/peptides, which are strong modulators of the innate immune system. Triacylated lipopeptides are assumed to be recognized by TLR2/TLR1-, whereas diacylated lipopeptides use TLR2/TLR6 heteromers for signaling. Following our initial discovery of TLR6-independent diacylated lipopeptides, we could now characterize di-(More)
LPS binding protein (LBP) is an acute-phase protein synthesized predominantly in the liver of the mammalian host. It was first described to bind LPS of Gram-negative bacteria and transfer it via a CD14-enhanced mechanism to a receptor complex including TLR-4 and MD-2, initiating a signal transduction cascade leading to the release of proinflammatory(More)
Lipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology. Both(More)
Of all pattern recognition receptors (PRR) in innate immunity, Toll-like receptor 2 (TLR2) recognizes the structurally broadest range of different bacterial compounds known as pathogen-associated molecular patterns (PAMPs). TLR2 agonists identified so far are lipopolysaccharides (LPSs) from different bacterial strains, lipoproteins, (synthetic)(More)
Microglial activation is a key feature in Alzheimer's disease and is considered to contribute to progressive neuronal injury by release of neurotoxic products. The innate immune receptor Toll-like-receptor 4 (TLR4), localized on the surface of microglia, is a first-line host defense receptor against invading microorganisms. Here, we show that a spontaneous(More)
Lipoproteins or lipopeptides (LP) are bacterial cell wall components detected by the innate immune system. For LP, it has been shown that TLR2 is the essential receptor in cellular activation. However, molecular mechanisms of LP recognition are not yet clear. We used a FLAG-labeled derivative of the synthetic lipopeptide(More)
OBJECTIVE Blood levels of cytokines are commonly elevated in severe congestive heart failure (CHF) and in coronary artery disease (CAD). While the adverse effects of cytokines on contractile function and myocardial cell integrity are well studied, little is known on whether cardiac cells are only targets or active players in these inflammatory reactions. (More)
Over the past 3 years our knowledge about how we sense the microbial world has been fundamentally changed. It has been known for decades that microbial products, such as lipopolysaccharide, lipoproteins, or peptidoglycan, have a profound activity on human cells. Whereas the structure of many different pathogenic microbial compounds has been extensively(More)
Bacterial lipoproteins/peptides are composed of di-O-acylated-S-(2,3-dihydroxypropyl)-cysteinyl residues N-terminally coupled to distinct polypeptides, which can be N-acylated with a third fatty acid. Using a synthetic lipopeptide library we characterized the contribution of the lipid portion to the TLR2 dependent pattern recognition. We found that the two(More)
Here we report on the purification, structural characterization, and biological activity of a glycolipid, 2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-alpha(R)-3-hydroxytetradecanoyl-(R)-3-hydroxytetradecanoate (RL-2,2(14)) produced by Burkholderia (Pseudomonas) plantarii. RL-2,2(14) is structurally very similar to a rhamnolipid exotoxin from(More)