Learn More
Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee (Dagstuhl Seminar Organizer Authors) Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin Litoiu, Sam(More)
To deal with the increasing complexity of software systems and uncertainty of their environments, software engineers have turned to self-adaptivity. Self-adaptive systems are capable of dealing with a continuously changing environment and emerging requirements that may be unknown at design-time. However, building such systems cost-effectively and in a(More)
Self-adaptation is typically realized using a control loop. One prominent approach for organizing a control loop in self-adaptive systems is by means of four components that are responsible for the primary functions of self-adaptation: Monitor, Analyze, Plan, and Execute, together forming a MAPE loop. When systems are large, complex, and heterogeneous, a(More)
The model-driven software development paradigm requires that appropriate model transformations are applicable in different stages of the development process. The transformations have to consistently propagate changes between the different involved models and thus ensure a proper model synchronization. However, most approaches today do not fully support the(More)
The goal of this roadmap paper is to summarize the stateof-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software(More)
The important concern for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, dependable, energy-efficient, customisable, configurable and self-optimising when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to(More)
The next generation of networked mechatronic systems will be characterized by complex coordination and structural adaptation at run-time. Crucial safety properties have to be guaranteed for all potential structural configurations. Testing cannot provide safety guarantees, while current model checking and theorem proving techniques do not scale for such(More)
Current techniques for the verification of software as e.g. model checking are limited when it comes to the verification of complex distributed embedded real-time systems. Our approach addresses this problem and in particular the state explosion problem for the software controlling mechatronic systems, as we provide a domain specific formal semantic(More)