Holger Fröhlich

Learn More
With the increased availability of high throughput data, such as DNA microarray data, researchers are capable of producing large amounts of biological data. During the analysis of such data often there is the need to further explore the similarity of genes not only with respect to their expression, but also with respect to their functional annotation which(More)
The problem of feature selection is a difficult combinatorial task in Machine Learning and of high practical relevance, e.g. in bioinformatics. Genetic Algorithms (GAs) offer a natural way to solve this problem. In this paper we present a special Genetic Algorithm, which especially takes into account the existing bounds on the generalization error for(More)
In outdoor environments, there is a variety of different types of ground surfaces. If some of them are slippery or bumpy, for example, the ground surface itself is a possible hazard for an autonomous mobile vehicle traversing the surface. Therefore, it is beneficial if the vehicle is able to estimate, which terrain it is currently traversing. Using this(More)
We propose a new kernel function for attributed molecular graphs, which is based on the idea of computing an optimal assignment from the atoms of one molecule to those of another one, including information on neighborhood, membership to a certain structural element and other characteristics for each atom. As a byproduct this leads to a new class of kernel(More)
Support Vector Machines (SVMs) have become one of the most popular methods in Machine Learning during the last years. A special strength is the use of a kernel function to introduce nonlinearity and to deal with arbitrarily structured data. Usually the kernel function depends on certain parameters, which, together with other parameters of the SVM, have to(More)
In breast cancer, overexpression of the transmembrane tyrosine kinase ERBB2 is an adverse prognostic marker, and occurs in almost 30% of the patients. For therapeutic intervention, ERBB2 is targeted by monoclonal antibody trastuzumab in adjuvant settings; however, de novo resistance to this antibody is still a serious issue, requiring the identification of(More)
MOTIVATION One of the main goals of high-throughput gene-expression studies in cancer research is to identify prognostic gene signatures, which have the potential to predict the clinical outcome. It is common practice to investigate these questions using classification methods. However, standard methods merely rely on gene-expression data and assume the(More)
Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA(More)
Kernel methods, like the well-known Support Vector Machine (SVM), have gained a growing interest during the last years for designing QSAR/QSPR models having a high predictive strength. One of the key concepts of SVMs is the usage of a so-called kernel function, which can be thought of as a special similarity measure. In this paper we consider kernels for(More)
Stratification of patients according to their clinical prognosis is a desirable goal in cancer treatment in order to achieve a better personalized medicine. Reliable predictions on the basis of gene signatures could support medical doctors on selecting the right therapeutic strategy. However, during the last years the low reproducibility of many published(More)