Learn More
The use of synthetic lipophilic molecules derived from 5-aminolevulinic acid (ALA) is currently under investigation to enhance cellular ALA penetration. In this work we studied the effect of systemic administration to mice of the hexyl ester of ALA (He-ALA) on porphyrin tissue synthesis as compared to ALA. In most normal tissues as well as in tumour, He-ALA(More)
The use of more lipophilic derivatives of 5-aminolevulinic acid (ALA) is expected to have better diffusing properties, and after conversion into the parent ALA, to reach a higher protoporphyrin IX (PPIX) formation rate, thus improving the efficacy of topical photodynamic therapy (PDT). Here we have analysed the behaviour of 3 ALA derivatives (ALA(More)
1. The kinetics of porphyrin accumulation in cultured mammalian epithelial cells (CNCM-I-221) during exposure to ALA was investigated. 2. The total porphyrin synthesized is a function of ALA concentration and the incubation time. The cellular porphyrin content exhibited a saturation pattern, reaching a plateau at about 0.04 fmol porphyrins/cell. A biphasic(More)
In spite of the wide range of tumours successfully treated with 5-aminolevulinic acid mediated photodynamic therapy, the fact that 5-aminolevulinic acid has low lipid solubility, limits its clinical application. More lipophilic 5-aminolevulinic acid prodrugs and the use of liposomal carriers are two approaches aimed at improving 5-aminolevulinic acid(More)
1. Using different doses of free and liposome encapsulated aminolevulinic acid (ALA) (between 2 and 8 mg/animal), given i.p., s.c. and intra-tumoural (i.t.), in vivo porphyrin synthesis by tumour, red blood cells (RBC) and different organs from tumour-bearing mice (TBM) and normal mice (NM) at different times, up to 24 hr after ALA administration, was(More)
Tumor, liver, skin and brain explants from tumor-bearing mice were cultured for 6, 12 and 22 hours in the presence of 0.06, 0.1 and 0.2 mM aminolevulinic acid (ALA). It was found that in all organs, synthesis of porphyrins increased with time and ALA concentration. The synthesising activity of tumor was high, of the same order as that of liver, and nearly(More)
Benzoporphyrin derivative monoacid ring A (BPD-MA) is a second generation hydrophobic photosensitiser for PDT that has been approved for ocular disease treatment. In the present paper we report the results of in vitro studies on the photosensitising activity of Verteporfin (liposomally formulated BPD-MA) using an adenocarcinoma derived cell line. Our(More)
The aim of this work was to test in vitro and in vivo the efficacy of the derivatives of 5-aminolevulinic acid (ALA): hexyl-ALA (He-ALA), undecanoyl-ALA and R,S-2-(hydroximethyl)tetrahydropyranyl-ALA (THP-ALA) as pro-photosensitising agents. The compounds were assayed in a cell line derived from a murine mammary tumour, in tumour explants and after(More)
Tetrapyrrole synthesis in CNCM-1221 cells exposed to 0.6 mM aminolaevulinic acid (ALA) was found to be approximately linear over a 6-h period of incubation. The rate was not significantly affected by cell density over a range of 0.015 to 0.15 x 10(6) cells cm(-2) (final cell density). Tetrapyrrole synthesis was not affected by GABA or glutamic acid in(More)
1. The effectiveness of the photodynamic action of porphyrins, was studied by means of the tissue explant culture technique. A murine tumor tissue explant was incubated in a medium containing 0.6 mM of ALA for periods of 1 and 2 hr; total porphyrins synthesized under these conditions were of the same level as those found in our previous in vivo experiments.(More)