Learn More
Lossy image compression techniques allow arbitrarily high compression rates but at the price of poor image quality. We applied maximum likelihood difference scaling to evaluate image quality of nine images, each compressed via vector quantization to ten different levels, within two different color spaces, RGB and CIE 1976 L*a*b*. In L*a*b* space, images(More)
Community detection is a very active field in complex networks analysis, consisting in identifying groups of nodes more densely interconnected relatively to the rest of the network. The existing algorithms are usually tested and compared on real-world and artificial networks, their performance being assessed through some partition similarity measure.(More)
This paper considers the use of image quality metric for still image compression systems comparison. Considering the fact that the conventional PSNR cannot suuciently reeect the result of subjective assessment, other quality measures have been considered to design the variable bit-rate coders. Indeed, distortion measures are developed for the purpose of(More)
Community detection is one of the most active fields in complex networks analysis, due to its potential value in practical applications. Many works inspired by different paradigms are devoted to the development of algorithmic solutions allowing to reveal the network structure in such cohesive subgroups. Comparative studies reported in the literature usually(More)
In this paper, a new spatiotemporal filtering scheme is described for noise reduction in video sequences. For this purpose, the scheme processes each group of three consecutive sequence frames in two steps: 1) estimate motion between frames and 2) use motion vectors to get the final denoised current frame. A family of adaptive spatiotemporal L-filters is(More)