Learn More
Endothelial progenitor cell (EPC)-capturing techniques have led to revolutionary strategies that can improve the performance of cardiovascular implant devices and engineered tissues by enhancing re-endothelialization and angiogenesis. However, these strategies are limited by controversies regarding the phenotypic identities of EPCs as well as their(More)
UNLABELLED The goal of this study is to develop unique native endothelium mimicking nanomatrices and evaluate their effects on adhesion and spreading of human umbilical vein endothelial cells (HUVECs) and aortic smooth muscle cells (AoSMCs). These nanomatrices were developed by self-assembly of peptide amphiphiles (PAs) through a solvent evaporation(More)
A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have(More)
The aim of this study is to develop a bioresponsive cisplatin (CDDP) delivery system with a self-assembling peptide amphiphile (PA) comprising a cell-adhesive matrix metalloproteinase-2 (MMP-2)-sensitive GTAGLIGQRGDS and a fatty acid. A biomimetic CDDP-PA gel was spontaneously formed upon incubating a mixture of CDDP and the PA for 5 h at 37 degrees C.(More)
Peptide amphiphile (PA) is a peptide-based biomaterial that can self-assemble into a nanostructured gel-like scaffold, mimicking the chemical and biological complexity of natural extracellular matrix. To evaluate the capacity of the PA scaffold to improve islet function and survival in vitro, rat islets were cultured in three different groups--(1) bare(More)
Cardiovascular disease is the number one cause of death in the United States. Deployment of stents and vascular grafts has been a major therapeutic method for treatment. However, restenosis, incomplete endothelialization, and thrombosis hamper the long term clinical success. As a solution to meet these current challenges, we have developed a native(More)
A significant barrier to the therapeutic use of stem cells is poor cell retention in vivo. Here, we evaluate the therapeutic potential and long-term engraftment of cardiomyocytes (CMs) derived from mouse embryonic stem cells (mESCs) encapsulated in an injectable nanomatrix gel consisting of peptide amphiphiles incorporating cell adhesive ligand(More)
This study investigated the ability of nanoscale, biomimetic peptide amphiphile (PA) scaffolds inscribed with specific cellular adhesive ligands to direct the osteogenic differentiation of human mesenchymal stem cells (hMSCs) without osteogenic supplements. PA sequences were synthesized to mimic the native bone extracellular matrix (ECM), expressing(More)
An attractive strategy for bone tissue engineering is the use of extracellular matrix (ECM) analogous biomaterials capable of governing biological response based on synthetic cell-ECM interactions. In this study, peptide amphiphiles (PAs) were investigated as an ECM-mimicking biomaterial to provide an instructive microenvironment for human mesenchymal stem(More)
Bioresponsive polymeric nanoparticles have been extensively pursued for the development of tumor-targeted drug delivery. A novel redox-sensitive biodegradable polymer with "trimethyl-locked" benzoquinone was synthesized for the preparation of paclitaxel-incorporated nanoparticles. The synthesized redox-sensitive nanoparticles released paclitaxel in response(More)