Learn More
A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity(More)
Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best(More)
Freeze-quenching of nitrogenase during reduction of carbon disulfide (CS(2)) was previously shown to result in the appearance of a novel EPR signal (g = 2.21, 1.99, and 1.97) not previously associated with any of the oxidation states of the nitrogenase metal clusters. In the present work, freeze-quench X- and Q-band EPR and Q-band (13)C electron nuclear(More)
Wild-type nitrogenase MoFe protein shows a deep 14N electron spin-echo envelope modulation (ESEEM) arising from a nitrogen nucleus (N1) coupled to the S = 3/2 spin system of the FeMo-cofactor of the MoFe protein. A previous ESEEM study on altered MoFe proteins generated by substitutions at the alpha-195-histidine position suggested that alpha-195-histidine(More)
The analysis methods described to date for (14)N electron spin echo envelope modulation (ESEEM) mostly deal with isotropic g- and (14)N hyperfine coupling tensors. However, many cases of rhombic tensors are encountered. In the present report we present general equations for analyzing orientation-selective ESEEM and illustrate their use. (i) We present(More)
  • 1