Learn More
The role of calcium (Ca(2+)) in cytokinesis is controversial, and the precise pathways that lead to its release during cleavage are not well understood. Ca(2+) is released from intracellular stores by binding of inositol trisphosphate (IP3) to the IP3 receptor (IP3R), yet no clear role in cytokinesis has been established for the precursor of IP3,(More)
The Sac1 lipid phosphatase dephosphorylates several phosphatidylinositol (PtdIns) phosphates and, in yeast, regulates a diverse range of cellular processes including organization of the actin cytoskeleton and secretion. We have identified mutations in the gene encoding Drosophila Sac1. sac1 mutants die as embryos with defects in dorsal closure (DC). DC(More)
Successful completion of cytokinesis relies on addition of new membrane, and requires the recycling endosome regulator Rab11, which localizes to the midzone. Despite the critical role of Rab11 in this process, little is known about the formation and composition of Rab11-containing organelles. Here, we identify the phosphatidylinositol (PI) 4-kinase III beta(More)
During spermiogenesis, Drosophila melanogaster spermatids coordinate their elongation in interconnected cysts that become highly polarized, with nuclei localizing to one end and sperm tail growth occurring at the other. Remarkably little is known about the signals that drive spermatid polarity and elongation. Here we identify phosphoinositides as critical(More)
Axonemes are microtubule-based organelles of crucial importance in the structure and function of eukaryotic cilia and flagella. Despite great progress in understanding how axonemes are assembled, the signals that initiate axoneme outgrowth remain unknown. Here, we identified phosphatidylinositol phosphates (phosphoinositides) as key regulators of early(More)
Assigning functional significance to completed genome sequences is one of the next challenges in biological science. Conventional genetic tools such as deficiency chromosomes help assign essential complementation groups to their corresponding genes. We describe an F2 genetic screen to identify lethal mutations within cytogenetic region 61D-61F of the third(More)
  • 1