Learn More
Although the BCL-2 family constitutes a crucial checkpoint in apoptosis, the intricate interplay between these family members remains elusive. Here, we demonstrate that BIM and PUMA, similar to truncated BID (tBID), directly activate BAX-BAK to release cytochrome c. Conversely, anti-apoptotic BCL-2-BCL-X(L)-MCL-1 sequesters these 'activator' BH3-only(More)
BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site(More)
While activation of BAX/BAK by BH3-only molecules (BH3s) is essential for mitochondrial apoptosis, the underlying mechanisms remain unsettled. Here we demonstrate that BAX undergoes stepwise structural reorganization leading to mitochondrial targeting and homo-oligomerization. The alpha1 helix of BAX keeps the alpha9 helix engaged in the dimerization(More)
Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are(More)
Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in(More)
Multidomain pro-apoptotic BAX and BAK, once activated, permeabilize mitochondria to trigger apoptosis, whereas anti-apoptotic BCL-2 members preserve mitochondrial integrity. The BH3-only molecules (BH3s) promote apoptosis by either activating BAX-BAK or inactivating anti-apoptotic members. Here, we present biochemical and genetic evidence that NOXA is a(More)
Colorectal cancer (CRC) remains a major contributor to cancer-related mortality. LIN28A and LIN28B are highly related RNA-binding protein paralogs that regulate biogenesis of let-7 microRNAs and influence development, metabolism, tissue regeneration, and oncogenesis. Here we demonstrate that overexpression of either LIN28 paralog cooperates with the Wnt(More)
Three forms of cell death have been described: apoptosis, autophagic cell death, and necrosis. Although genetic and biochemical studies have formulated a detailed blueprint concerning the apoptotic network, necrosis is generally perceived as a passive cellular demise resulted from unmanageable physical damages. Here, we conclude an active de novo genetic(More)
The proapoptotic proteins BAX and BAK constitute the mitochondrial apoptotic gateway that executes cellular demise after integrating death signals. The lethal BAK is kept in check by voltage-dependent anion channel 2 (VDAC2), a mammalian-restricted VDAC isoform. Here, we provide evidence showing a critical role for the VADC2-BAK complex in determining(More)
The threonine endopeptidase Taspase1 has a critical role in cancer cell proliferation and apoptosis. In this study, we developed and evaluated small molecule inhibitors of Taspase1 as a new candidate class of therapeutic modalities. Genetic deletion of Taspase1 in the mouse produced no overt deficiencies, suggesting the possibility of a wide therapeutic(More)