Learn More
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show(More)
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the(More)
Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors(More)
beta-Catenin can promote adhesion at the cell cortex and mediate Wnt signaling in the nucleus. We show that, in Caenorhabditis elegans, both WRM-1/beta-catenin and LIT-1 kinase localize to the anterior cell cortex during asymmetric cell division but to the nucleus of the posterior daughter afterward. Both the cortical and nuclear localizations are regulated(More)
BACKGROUND Neural RNA-binding proteins are thought to play important roles in neural development and the functional regulation of postmitotic neurones by mediating post-transcriptional gene regulation. RNA-binding proteins belonging to the Musashi family are highly expressed in the nervous system; however, their roles are poorly understood. RESULTS We(More)
Regulatory programs that control the specification of serotonergic neurons have been investigated by genetic mutant screens in the nematode Caenorhabditis elegans. Loss of a previously uncloned gene, ham-3, affects migration and serotonin antibody staining of the hermaphrodite-specific neuron (HSN) pair. We characterize these defects here in more detail,(More)
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes(More)
Wnt/MAPK signaling is a common variant of Wnt signaling in C. elegans and has been implicated in vertebrates. The sys-1 gene works with Wnt/MAPK signaling to control cell fates during C. elegans development. We report that the SYS-1 amino acid sequence is novel but that SYS-1 functions as beta-catenin: SYS-1 rescues a bar-1/beta-catenin null mutant, binds(More)
For proper chromosome segregation, the sister kinetochores must attach to microtubules extending from the opposite spindle poles. Any errors in microtubule attachment can induce aneuploidy. In this study, we identify a novel conserved Caenorhabditis elegans microtubule-associated protein, regulator of microtubule dynamics 1 (RMD-1), that localizes to(More)
The axis of asymmetric cell division is controlled to determine the future position of differentiated cells during animal development. The asymmetric localization of PAR proteins in the Drosophila neuroblast and C. elegans embryo are aligned with the axes of the embryo. However, whether extracellular or intracellular signals determine the orientation of the(More)