Learn More
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show(More)
In various organisms, cells divide asymmetrically to produce distinct daughter cells. In the nematode Caenorhabditis elegans, asymmetric division is controlled by the asymmetric activity of a Wnt signaling pathway (the Wnt/beta-catenin asymmetry pathway). In this process, two specialized beta-catenin homologs have crucial roles in the transmission of Wnt(More)
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the(More)
Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors(More)
Wnt signaling plays important roles in cell polarization in diverse organisms, and loss of cell polarity is an early event in tumorigenesis caused by mutations in Wnt pathway genes. Despite this, the precise roles of Wnt proteins in cell polarization have remained elusive. In no organism has it been shown that the asymmetric position of a Wnt signal is(More)
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes(More)
The maintenance of cell fate is important for normal development and tissue homeostasis. Epigenetic mechanisms, including histone modifications, are likely to play crucial roles in cell-fate maintenance. However, in contrast to the established functions of histone methylation, which are mediated by the polycomb proteins, the roles of histone acetylation in(More)
Wnt proteins are secreted lipid-modified glycoproteins that control many aspects of development in organisms ranging from sponges to vertebrates. Wnt proteins are also important regulators of C. elegans development, with functions in processes as diverse as cell fate specification, asymmetric cell division, cell migration and synapse formation. In this(More)
For proper chromosome segregation, the sister kinetochores must attach to microtubules extending from the opposite spindle poles. Any errors in microtubule attachment can induce aneuploidy. In this study, we identify a novel conserved Caenorhabditis elegans microtubule-associated protein, regulator of microtubule dynamics 1 (RMD-1), that localizes to(More)
beta-Catenin can promote adhesion at the cell cortex and mediate Wnt signaling in the nucleus. We show that, in Caenorhabditis elegans, both WRM-1/beta-catenin and LIT-1 kinase localize to the anterior cell cortex during asymmetric cell division but to the nucleus of the posterior daughter afterward. Both the cortical and nuclear localizations are regulated(More)