Learn More
Ethanol stimulates the firing activity of midbrain dopamine (DA) neurons, leading to enhanced dopaminergic transmission in the mesolimbic system. This effect is thought to underlie the behavioral reinforcement of alcohol intake. Ethanol has been shown to directly enhance the intrinsic pacemaker activity of DA neurons, yet the cellular mechanism mediating(More)
During early postnatal development, midbrain dopamine (DA) neurons display anomalous firing patterns and amphetamine response. Spontaneous miniature hyperpolarizations (SMHs) are observed in DA neurons during the same period but not in adults. These hyperpolarizations have been shown to be dependent on the release of Ca2+ from internal stores and the(More)
Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca(2+)-sensitive K(+) channels, which is mediated by the release of Ca(2+) from intracellular stores. Neurotransmitter-induced mobilization of Ca(2+) is generally ascribed to the action of(More)
Alcoholism is characterized by compulsive alcohol intake after a history of chronic consumption. A reduction in mesolimbic dopaminergic transmission observed during abstinence may contribute to the negative affective state that drives compulsive intake. Although previous in vivo recording studies in rodents have demonstrated profound decreases in the firing(More)
Synaptically released glutamate evokes slow IPSPs mediated by metabotropic glutamate receptors (mGluRs) in midbrain dopamine neurons. These mGluR IPSPs are caused by release of Ca(2+) from intracellular stores and subsequent activation of small-conductance Ca(2+)-activated K(+) channels (SK channels). To further investigate the intracellular mechanisms(More)
Hyperpolarization-activated cation current (I h) is an ethanol target in midbrain dopamine neurons of mice. Ethanol stimulates the firing activity of midbrain dopamine (DA) neurons, leading to enhanced dopaminergic transmission in the me-solimbic system. This effect is thought to underlie the behavioral reinforcement of alcohol intake. Ethanol has been(More)
Amphetamine is a highly addictive psychostimulant that promotes the release of the catecholamines dopamine and norepinephrine. Amphetamine-induced release of dopamine in the midbrain inhibits the activity of dopamine neurons through activation of D2 dopamine autoreceptors. Here we show that amphetamine may also excite dopamine neurons through modulation of(More)
During sensorimotor learning, tonically active neurons (TANs) in the striatum acquire bursts and pauses in their firing based on the salience of the stimulus. Striatal cholinergic interneurons display tonic intrinsic firing, even in the absence of synaptic input, that resembles TAN activity seen in vivo. However, whether there are other striatal neurons(More)
The striatum plays a central role in sensorimotor learning and action selection. Tonically active cholinergic interneurons in the striatum give rise to dense axonal arborizations and significantly shape striatal output. However, it is not clear how the activity of these neurons is regulated within the striatal microcircuitry. In this study, using rat brain(More)
Bursts of spikes triggered by sensory stimuli in midbrain dopamine neurons evoke phasic release of dopamine in target brain areas, driving reward-based reinforcement learning and goal-directed behavior. NMDA-type glutamate receptors (NMDARs) play a critical role in the generation of these bursts. Here we report LTP of NMDAR-mediated excitatory transmission(More)