Hitoshi Kurumizaka

Learn More
In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3(More)
Interstrand cross-links (ICLs) block replication and transcription and thus are highly cytotoxic. In higher eukaryotes, ICLs processing involves the Fanconi anemia (FA) pathway and homologous recombination. Stalled replication forks activate the eight-subunit FA core complex, which ubiquitylates FANCD2-FANCI. Once it is posttranslationally modified, this(More)
The human Rad52 protein forms a heptameric ring that catalyzes homologous pairing. The N-terminal half of Rad52 is the catalytic domain for homologous pairing, and the ring formed by the domain fragment was reported to be approximately decameric. Splicing variants of Rad52 and a yeast homolog (Rad59) are composed mostly of this domain. In this study, we(More)
Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis. We find that CenH3(More)
Damage recognition by repair/checkpoint factors is the critical first step of the DNA damage response. DNA double strand breaks (DSBs) activate checkpoint signaling and are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR) pathways. However, in vivo kinetics of the individual factor responses and the mechanism of pathway choice(More)
An ATM-dependent cellular signal, a DNA-damage response, has been shown to be involved during infection of human immunodeficiency virus type-1 (HIV-1), and a high incidence of malignant tumor development has been observed in HIV-1-positive patients. Vpr, an accessory gene product of HIV-1, delays the progression of the cell cycle at the G2/M phase, and(More)
Escherichia coli DnaA binds to 9 bp sequences (DnaA boxes) in the replication origin, oriC, to form a complex initiating chromosomal DNA replication. In the present study, we determined the crystal structure of its DNA-binding domain (domain IV) complexed with a DnaA box at 2.1 A resolution. DnaA domain IV contains a helix-turn-helix motif for DNA binding.(More)
RAD51, an essential eukaryotic DNA recombinase, promotes homologous pairing and strand exchange during homologous recombination and the recombinational repair of double strand breaks. Mutations that up- or down-regulate RAD51 gene expression have been identified in several tumors, suggesting that inappropriate expression of the RAD51 activity may cause(More)
Although the identification of specific genes that regulate apoptosis has been a topic of intense study, little is known of the role that background genetic variance plays in modulating cell death. Using germ cells from inbred mouse strains, we found that apoptosis in mature (metaphase II) oocytes is affected by genetic background through at least two(More)
In DNA damage responses, the Fanconi anemia (FA) protein, FancD2, is targeted to chromatin and forms nuclear foci following its monoubiquitination, a process likely catalyzed by the FA core complex. Here, we show that a chicken FancD2-ubiquitin fusion protein, carrying a Lys-Arg substitution removing the natural monoubiquitination site (D2KR-Ub), could(More)