Learn More
In the present study, we compared the estrogenic activity of zearalenone (ZEN) and zeranol (ZOL) by determining their relative receptor binding affinities for human ERalpha and ERbeta and also by determining their uterotropic activity in ovariectomized female mice. ZOL displayed a much higher binding affinity for human ERalpha and ERbeta than ZEN did. The(More)
The estrogenic activity of bisphenol A (BPA) and its chlorinated derivatives, 2-(3-chloro-4-hydroxyphenyl)-2-(4-hydroxyphenyl)propane (3-ClBPA) and 2,2-bis(3-chloro-4-hydroxyphenyl)propane (3,3'-diClBPA) was assessed by determining their relative binding affinity for the human estrogen receptor-alpha and -beta (ERalpha and ERbeta) and also their(More)
Endogenous estrogens, such as 17β-estradiol (E2), are implicated in the development of breast cancer. The putative mechanisms by which estrogens exert the carcinogenic effects have been recognized to involve the redox cycling of estrogen metabolites and subsequent estrogen-DNA adduct formation as well as the estrogen receptor-dependent pathway of(More)
Cytochrome P450 (CYP) 1B1 catalyzes 17beta-estradiol (E(2)) to predominantly carcinogenic 4-hydroxy-E(2), whereas CYP1A1 and 1A2 convert E(2) to non-carcinogenic 2-hydroxy-E(2). Hence, selective inhibition of CYP1B1 is recognized to be beneficial for the prevention of E(2) related breast cancer. In this study, we first evaluated the structure-property(More)
CYP1A1 and CYP1A2 exhibit catalytic activity predominantly for the 2-hydroxylation of estradiol, whereas CYP1B1 exhibits catalytic activity predominantly for 4-hydroxylation of estradiol. To understand why CYP1B1 predominantly hydroxylates the 4-position of estradiol, we constructed three-dimensional structures of CYP1A1 and CYP1B1 by homology modeling,(More)
A 17beta-estradiol (E(2)) is hydrolyzed to 2-hydroxy-E(2) (2-OHE(2)) and 4-hydroxy-E(2) (4-OHE(2)) via cytochrome P450 (CYP) 1A1 and 1B1, respectively. In estrogen target tissues including the mammary gland, ovaries, and uterus, CYP1B1 is highly expressed, and 4-OHE(2) is predominantly formed in cancerous tissues. In this study, we investigated the(More)
Risk factors for breast cancer include estrogens such as 17β-estradiol (E2) and high stress levels. 4-Hydroxyestradiol (4-OHE2), a metabolite of E2 formed preferentially by cytochrome P450 1B1, is oxidized to E2-3,4-quinone, which reacts with DNA to form depurinating adducts that exert genotoxicity and carcinogenicity. Endogenous catecholamines such as(More)
Cytochrome P450 (CYP) 1 families including CYP1A1, 1A2 and 1B1 are well known to be deeply involved in the initiation of several cancers, due to the fact that they activate environmental pro-carcinogens to form ultimate carcinogens. Benzo[a]pyrene (BaP) is one of the major classes of prototypical pro-carcinogen. It is activated by the CYP1 family to its(More)
The recent various applications of phages (bacteriophages) including phage therapy have brought about a revival of phage investigation. The phage titer assay is indispensable for phage experiments. However, the conventional standard method is a plaque counting method which requires a little skill with tedious repeating operation. Furthermore, it is not(More)
Although it is well known that dietary lipids affect the course of glomerulonephritis in rats and humans, the precise mechanisms involved have not been fully elucidated. The aim of this study was to investigate the effects of different types of dietary lipids (fish oil and vegetable oil) on daunomycin (DM)-induced nephropathy in mice fed on soybean oil (SO)(More)
  • 1