Learn More
Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory(More)
Many Prunus species, including sweet cherry and Japanese apricot, of the Rosaceae, display an S-RNase-based gametophytic self-incompatibility (GSI). The specificity of this outcrossing mechanism is determined by a minimum of two genes that are located in a multigene complex, termed the S locus, which controls the pistil and pollen specificities. SFB, a gene(More)
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5.(More)
cDNAs encoding three S-RNases of almond (Prunus dulcis), which belongs to the family Rosaceae, were cloned and sequenced. The comparison of amino acid sequences between the S-RNases of almond and those of other rosaceous species showed that the amino acid sequences of the rosaceous S-RNases are highly divergent, and intra-subfamilial similarities are higher(More)
This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S (1), S (2), and S (2m), found in this study encode mutated pollen determinants, SFB, while only S (2m) has a mutation that affects the function of the pistil determinant(More)
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific(More)
The transition from self-incompatibility (SI) to self-compatibility (SC) is regarded as one of the most prevalent transitions in Angiosperm evolution, having profound impacts on the genetic structure of populations. Yet, the identity and function of mutations that result in the breakdown of SI in nature are not well understood. This work provides the first(More)
This study identifies and characterizes a basic non-S RNase in the styles with stigmas of sweet cherry (Prunus avium L.), a member of the Rosaceae subfamily Amygdaloideae, which has an RNase-based gametophytic self-incompatibility system. Internal sequences of putative non-S RNases (RNase PA1 and PA2) were determined, and a cDNA for PA1 was obtained. The(More)
This study describes a novel F-box protein gene in the S-locus of sour cherry (Prunus cerasus) and sweet cherry (P. avium). The gene showed an S-haplotype-specific sequence polymorphism and the expression was specific to pollen. Genomic DNA blot analysis of eight sweet cherry cultivars with the probe for the F-box protein gene under low stringency(More)
The proteome of the plant cell wall/apoplast is less well characterized than those of other subcellular compartments. This largely reflects the many technical challenges involved in extracting and identifying extracellular proteins, many of which resist isolation and identification, and in capturing a population that is both comprehensive and relatively(More)