Learn More
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5(More)
Many Prunus species, including sweet cherry and Japanese apricot, of the Rosaceae, display an S-RNase-based gametophytic self-incompatibility (GSI). The specificity of this outcrossing mechanism is determined by a minimum of two genes that are located in a multigene complex, termed the S locus, which controls the pistil and pollen specificities. SFB, a gene(More)
Stylar proteins of 13 almond (Prunus dulcis) cultivars with known S-genotypes were surveyed by IEF and 2D-PAGE combined with immunoblot and N-terminal amino acid sequence analyses to identify S-RNases associated with gametophytic self-incompatibility (SI) in this plant species. RNase activities corresponding to Sa and Sb, two of the four S-alleles tested,(More)
This study describes a novel F-box protein gene in the S-locus of sour cherry (Prunus cerasus) and sweet cherry (P. avium). The gene showed an S-haplotype-specific sequence polymorphism and the expression was specific to pollen. Genomic DNA blot analysis of eight sweet cherry cultivars with the probe for the F-box protein gene under low stringency(More)
Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory(More)
Japanese apricot (Prunus mume) exhibits the S-RNase-based gametophytic self-incompatibility system as do other self-incompatible Prunus species. This report identifies the S haplotype-specific F-box protein gene (SFB), a candidate gene for pollen-S, of Japanese apricot, which leads to the development of a molecular typing system for S-haplotype in this(More)
This study characterizes the S6m-haplotype, a mutated S6-haplotype with an altered HindIII cut site, of sour cherry (Prunus cerasus). Inheritance and pollination studies of S-haplotypes from reciprocal crosses between 'Erdi Botermo' (EB; S4S6mSa) and 'Rheinische Schattenmorelle' (RS; S6SaSbSc) revealed that the S6m-haplotype conferred unilateral(More)
The transition from self-incompatibility (SI) to self-compatibility (SC) is regarded as one of the most prevalent transitions in Angiosperm evolution, having profound impacts on the genetic structure of populations. Yet, the identity and function of mutations that result in the breakdown of SI in nature are not well understood. This work provides the first(More)
This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S 1 , S 2 , and S 2m , found in this study encode mutated pollen determinants, SFB, while only S 2m has a mutation that affects the function of the pistil determinant S-RNase. A(More)
Gametophytic self-incompatibility (GSI) typically "breaks down" due to polyploidy in many Solanaceous species, resulting in self-compatible (SC) tetraploid individuals. However, sour cherry (Prunus cerasus L.), a tetraploid species resulting from hybridization of the diploid sweet cherry (P. avium L.) and the tetraploid ground cherry (P. fruticosa Pall.),(More)