Hirut Kebede

Learn More
Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The(More)
Cotton exhibits moderately high vegetative tolerance to water-deficit stress but lint production is restricted by the available rainfed and irrigation capacity. We have described the impact of water-deficit stress on the genetic and metabolic control of fiber quality and production. Here we examine the association of tentative consensus sequences (TCs)(More)
Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait) under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients(More)
Inheritance studies and molecular mapping identified a single dominant gene that conditions seed coat impermeability in soybean PI 594619. High temperatures during seed fill increase the occurrence of soybeans with impermeable seed coat, which is associated with non-uniform and delayed germination and emergence. This can be an issue in soybean production(More)
Seed coat wrinkling is a major factor affecting the germinability of soybean [Glycine max (L.) Merr.] seed produced in high-temperature environments, such as in the Early Soybean Production System of the midsouthern United States. Exposure of seed to high temperatures, coupled with alternating periods of wet and dry conditions, promotes seed coat wrinkling.(More)
  • 1