Hiruni P. S. Kumaratunga

Learn More
The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua) and to investigate their daily gene expression(More)
The circadian rhythm is a fundamental adaptive mechanism to the daily environmental changes experienced by many organisms, including fish. Myosins constitute a large family of contractile proteins that are essential functional components of skeletal muscle. They are known to display thermal plasticity but the influence of light on myosin expression remains(More)
The notion that the circadian rhythm is exclusively regulated by a central clock has been challenged by the discovery of peripheral oscillators. These peripheral clocks are known to have a direct influence on the biological processes in a tissue or cell. In fish, several peripheral clocks respond directly to light, thus raising the hypothesis of autonomous(More)
  • 1