Learn More
The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular(More)
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly(More)
The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used(More)
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the(More)
The accurate and reliable computation of relative free energy differences remains an important long-term goal. Major stumbling blocks for achieving this goal reflect the difficulty of sampling in a known fashion along the reaction coordinate and of maximally combining information that has been collected from the simulation along the reaction coordinate. In(More)
The human erythrocyte sialoglycoprotein glycophorin A (GpA) has been used extensively in experiment and simulations as a model of transmembrane helix-dimer formation, emphasizing the critical role of specific residue-residue interactions between helices in dimer stability. While the tertiary dimer structure is modulated by the hydrophobic lipid bilayer(More)
  • 1