Hiroyuki Osada

Learn More
Trichostatin A (TSA) inhibits all histone deacetylases (HDACs) of both class I and II, whereas trapoxin (TPX) cannot inhibit HDAC6, a cytoplasmic member of class II HDACs. We took advantage of this differential sensitivity of HDAC6 to TSA and TPX to identify its substrates. Using this approach, alpha-tubulin was identified as an HDAC6 substrate. HDAC6(More)
Wee1, the Cdc2 inhibitory kinase, needs to be down-regulated at the onset of mitosis to ensure rapid activation of Cdc2. Previously, we have shown that human somatic Wee1 (Wee1A) is down-regulated both by protein phosphorylation and degradation, but the underlying mechanisms had not been elucidated. In the present study, we have identified the(More)
At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCF(beta-TrCP). The F-box protein beta-TrCP (beta-transducin repeat-containing protein), the substrate recognition(More)
Polo-like kinase 1 (Plk1) is one of the key regulators of mitotic cell division. In addition to an N-terminal protein kinase catalytic domain, Plk1 possesses a phosphopeptide binding domain named polo box domain (PBD) at its C terminus. PBD is postulated to be essential for Plk1 localization and substrate targeting. Here, we developed a high-throughput(More)
Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor-associated macrophages, are suggested to promote tumorigenesis. In this study, we examined(More)
Osteoclasts, bone-resorptive multinucleated cells derived from hematopoietic stem cells, are associated with many bone-related diseases, such as osteoporosis. Osteoclast-targeting small-molecule inhibitors are valuable tools for studying osteoclast biology and for developing antiresorptive agents. Here, we have discovered that methyl-gerfelin (M-GFN), the(More)
A key point in the biosynthesis of the antimalarial drug artemisinin is the formation of dihydroartemisinic aldehyde which represents the key difference between chemotype specific pathways. This key intermediate is the substrate for several competing enzymes, some of which increase the metabolic flux towards artemisinin, and some of which--as we show in the(More)
Zearalenone (ZEN) is converted into a far less oestrogenic product by incubation with Clonostachys rosea IFO 7063. An alkaline hydrolase responsible for the detoxification was purified to homogeneity from the fungus by a combination of salt precipitation and column chromatography methods. The purified enzyme was homodimeric with a subunit molecular mass of(More)
RECK, a glycosylphosphatidylinositol-anchored glycoprotein, inhibits the enzymatic activities of some matrix metalloproteinases (MMP), thereby suppressing tumor cell metastasis; however, the detailed mechanism is still obscure. In this study, we compared the gene expression profiles between mock- and RECK-transfected HT1080 cells and showed that RECK(More)
The release of cytochrome c from mitochondria is a critical step during apoptosis. In order to study this process, we have used a synthetic compound, MT-21, that is able to initiate release of cytochrome c from isolated mitochondria. We demonstrate that MT-21 significantly inhibits ADP transport activity in mitochondria and reduces binding of the adenine(More)