Learn More
This paper presents an analysis of the effects of the electrode-to-fiber distance on the temporal response properties of an auditory nerve fiber stimulated by electric current pulses. This analysis was based upon results from a computational model of a mammalian auditory nerve fiber axon having 50 nodes of Ranvier, each consisting of 130 stochastic sodium(More)
This paper presents a comparison of computational algorithms to simulate action potentials using stochastic sodium channels. Four algorithms are compared in single-node models: Strassberg and DeFelice (1993) (SD), Rubinstein (1995) (R), Chow and White (1996) (CW), and Fox (1997) (F). Neural responses are simulated to a simple and a preconditioned monophasic(More)
In an earlier study, biphasic and monphasic electrical stimulation of the auditory nerve was performed in cats with a cochlear implant. Single-unit recordings demonstrated that spikes resulting from monophasic and biphasic stimuli have different thresholds and latencies. Monophasic thresholds are lower and latencies are shorter under cathodic stimulation.(More)
Hypothyroidism was induced in rats by treatment with propylthiouracil through the mother's milk throughout the suckling period followed by surgical thyroidectomy without use of radioiodine. The growth of these animals was considerably retarded and their light-dark discriminative operant learning ability was also significantly decreased. Replacement therapy(More)
In this paper, the effects of neural refractoriness on action potential (spike) initiations with electrical stimulation are investigated using computer modeling and simulation techniques. The computational model was composed of a myelinated nerve fiber with 50 nodes of Ranvier, each consisting of stochastic sodium and potassium channels, making it possible(More)
Stochastic resonance (SR) is a noise-induced phenomenon whereby signal detection can be improved by the addition of background noise in nonlinear systems. SR can also improve the transmission of information within single neurons. Since information processing in the brain is carried out by neural networks and noise is present throughout the brain, the(More)
Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when(More)
This paper presents an information-theoretic analysis of neural spike trains in an auditory nerve fiber (ANF) model stimulated extracellularly with Gaussian or sinusoidal waveforms in the presence of a pseudospontaneous activity of spike firings. In the computer simulation, stimulus current waveforms were applied repeatedly to a stimulating electrode(More)
Stochastic resonance (SR) has been shown to improve the detection of subthreshold neural signals in uncorrelated noise. It is yet unclear if and how interactions within a population of neurons can improve information processing in neural networks. In this paper, we investigate the effect of the number of neurons on information transmission in an array of(More)