Learn More
Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We(More)
BACKGROUND All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the(More)
Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after(More)
Superoxide dismutases (SODs) are metallo-enzymes that catalyze the dismutation of superoxide radicals. In Arabidopsis thaliana, the expression of CuZn-SOD in both the chloroplast and cytosol was reported to be down-regulated by microRNA398 (miR398) during growth on low copper. The moss Physcomitrella patens contains chloroplastic and cytosolic CuZn-SOD(More)
Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1(More)
Suaeda maritima varieties native to Japan and Egypt were cultured under aseptic conditions. The varieties differed in genetic distance but exhibited similar expression profiles of superoxide dismutase isozyme genes. The expression characteristics of superoxide dismutase (SOD; EC 1.15.1.1) isozyme genes from halophytic Suaeda marit ima plants native to Japan(More)
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named “cyanelles”. In(More)
Plant growth regulators (PGRs) play a pivotal role in vascular plants, regulating growth, development, and stress responses; however, the role of PGRs in algae remains largely unexplored. Here, the role of ethylene, a simple plant growth regulator, was demonstrated in sexual reproduction of the marine red alga Pyropia yezoensis. Application of the ethylene(More)
Class A penicillin-binding proteins (PBPs) are active in the final step of bacterial peptidoglycan biosynthesis. They possess a transglycosylase (TG) domain to polymerize the glycan chains and a transpeptidase (TP) domain to catalyze peptide cross-linking. We reported that knockout of the Pbp gene in the moss Physcomitrella patens (ΔPpPbp) results in a(More)
Superoxide dismutases (SODs) catalyze the dismutation of superoxide and play an important role in reducing oxidative stress in plants. Based on in-gel SOD activity staining, chloroplasts of the moss Physcomitrella patens have two CuZn-SODs as the major SOD isozymes and minor SODs, including a Fe-SOD and two Mn-SODs. To investigate the contribution of(More)