Learn More
Eukaryotic methylotrophs, which are able to obtain all the carbon and energy needed for growth from methanol, are restricted to a limited number of yeast species. When these yeasts are grown on methanol as the sole carbon and energy source, the enzymes involved in methanol metabolism are strongly induced, and the membrane-bound organelles, peroxisomes,(More)
Candida boidinii Pmp47, an integral peroxisomal membrane protein, belongs to a family of mitochondrial solute transporters (e.g., ATP/ADP exchanger), and is the only known peroxisomal member of this family. However, its physiological and biochemical functions have been unrevealed because of the difficulties in the molecular genetics of C. boidinii. In this(More)
The capacity to use methanol as sole source of carbon and energy is restricted to relatively few yeast species. This may be related to the low efficiency of methanol metabolism in yeast, relative to that of prokaryotes. This contribution describes the details of methanol metabolism in yeast and focuses on the significance of compartmentalization of this(More)
A newly isolated denitrifying bacterium, Thauera sp. strain DNT-1, grew on toluene as the sole carbon and energy source under both aerobic and anaerobic conditions. When this strain was cultivated under oxygen-limiting conditions with nitrate, first toluene was degraded as oxygen was consumed, while later toluene was degraded as nitrate was reduced.(More)
The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these(More)
The methylotrophic yeast Candida boidinii S2 was found to be able to grow on pectin or polygalacturonate as a carbon source. When cells were grown on 1% (wt/vol) pectin, C. boidinii exhibited induced levels of the pectin-depolymerizing enzymes pectin methylesterase (208 mU/mg of protein), pectin lyase (673 mU/mg), pectate lyase (673 mU/mg), and(More)
The methylotrophic yeast Candida boidinii exhibits S-formylglutathione hydrolase activity (FGH, EC 3.1.2.12), which is involved in the glutathione-dependent formaldehyde oxidation pathway during growth on methanol as the sole carbon source. The structural gene, FGH1, was cloned from C. boidinii, and its predicted amino acid sequence showed more than 60 %(More)
Methanotrophs are widespread and have been isolated from various environments including the phyllosphere. In this study, we characterized the plant colonization by Methylosinus sp. B4S, an α-proteobacterial methanotroph isolated from plant leaf. The gfp-tagged Methylosinus sp. B4S cells were observed to colonize Arabidopsis leaf surfaces by forming(More)
This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as(More)
Transglutaminase (TGase) from the actinomycete Streptomyces mobaraensis is a useful enzyme in the food industry, and development of an efficient production system for it would be desirable. Herein we report secretion of TGase in an enzymatically active form by methylotrophic yeasts as expression hosts. Secretory production of active TGase required a(More)