Hirotaka Kashiwagi

Learn More
The discovery and structure-activity relationship of a novel series of coumarin-based TNF-alpha inhibitors is described. Starting from the initial lead 1a, various derivatives were prepared surrounding the coumarin core structure to optimize the in vitro inhibitory activity of TNF-alpha production by human peripheral blood mononuclear cells (hPBMC),(More)
Novel vitamin D(3) analogs with carboxylic acid were explored, focusing on a nonsecosteroidal analog, LG190178, with a bisphenyl skeleton. From X-ray analysis of these analogs with vitamin D receptor (VDR), the carboxyl groups had very unique hydrogen bonding interactions in VDR and mimicked 1α-hydroxy group and/or 3β-hydroxy group of 1α,25-dihydroxyvitamin(More)
From our research of nonsecosteroidal vitamin D(3) derivatives with gamma hydroxy carboxylic acid, we identified compound 6, with two CF(3) groups in the side chain, as a most potent vitamin D receptor (VDR) agonist that shows superagonistic activity in VDRE reporter gene assay, MG-63 osteocalcin production assay and HL-60 cell differentiation assay.(More)
We have developed a method for converting a transforming growth factor-β-activated kinase 1 (TAK1) type I inhibitor into a type II or c-helix-out inhibitor by structure-based drug design (SBDD) to achieve an effective strategy for developing these different types of kinase inhibitor in parallel. TAK1 plays a key role in inflammatory and immune signaling,(More)
Transforming growth factor-β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, plays an essential role in mediating signals from various pro-inflammatory cytokines and therefore may be a good target for developing anti-inflammation agents. Herein, we report our efforts to identify TAK1 inhibitors with a good(More)
A series of nonsecosteroidal vitamin D(3) analogs with carboxylic acid were explored. Through our systematic SAR studies on the side chain moiety, compound 6b was identified as the optimal compound showing excellent vitamin D receptor (VDR) agonistic activity. Compound 6b had the diethyl group in the terminal which was bound by (E)-olefin linker to the(More)
A novel thienopyrimidinone analog was discovered as a potent and highly selective TAK1 inhibitor using the SBDD approach. TAK1 plays a key role in inflammatory and immune signaling, so TAK1 is considered to be an attractive molecular target for the treatment of human diseases (inflammatory disease, cancer, etc.). After the hit compound had been obtained,(More)
Side-chain elongation of active vitamin D3 is acknowledged as a structural modification to enhance its cell differentiation activity; however, the comprehensive structure-activity relationship (SAR) as a result of this modification has not been reported. To clarify the SAR, we synthesized six analogs systematically elongated at the 24-position,(More)
In an extension of our study on gamma hydroxy carboxylic acid analogs, we explored a series of nonsecosteroidal vitamin D receptor (VDR) agonists in which 1,3-diol of 1,25(OH)2D3 had been replaced by aryl acetic acid. These analogs showed very potent activity in vitro compared with 1,25(OH)2D3. An X-ray analysis of 8d showed that the inserted phenyl ring(More)
  • 1