Learn More
We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions(More)
Based on the genomic sequence data of Escherichia coli K-12 strain, we have constructed a complete set of cloned individual genes encoding Histidine-tagged proteins with or without GFP fused for functional genomic analysis. Each clone encodes a protein of predicted ORF attached by Histidines and seven spacer amino acids at the N-terminal end, and five(More)
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to(More)
Analysis of cellular components at multiple levels of biological information can provide valuable functional insights. We performed multiple high-throughput measurements to study the response of Escherichia coli cells to genetic and environmental perturbations. Analysis of metabolic enzyme gene disruptants revealed unexpectedly small changes in messenger(More)
The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene(More)
The mutant deficient in glucose-6-phosphate dehydrogenase (G6PDH) was constructed by disrupting zwf gene by one-step inactivation protocol using polymerase chain reaction primers. The knockout of zwf gene was shown to have different influence on the metabolism of Escherichia coli grown on glucose or acetate. The decreased rates of substrate uptake and CO(2)(More)
A contiguous 111,402-nucleotide sequence corresponding to the 0 to 2.4 min region of the E. coli chromosome was determined as a first step to complete structural analysis of the genome. The resulting sequence was used to predict open reading frames and to search for sequence similarity against the PIR protein database. A number of novel genes were found(More)
During the stationary phase of Escherichia coli growth, ribosomal structure changes drastically. Proteins RMF, YhbH, YfiA and SRA are expressed and bind to ribosome particles. In a process named 'ribosomal hibernation,' RMF binding induces the dimerization and subsequent inactivation of 70S ribosomes. Here, we examined the functions of YhbH and YfiA in the(More)
The responses of Escherichia coli central carbon metabolism to knockout mutations in phosphoglucose isomerase and glucose-6-phosphate (G6P) dehydrogenase genes were investigated by using glucose- and ammonia-limited chemostats. The metabolic network structures and intracellular carbon fluxes in the wild type and in the knockout mutants were characterized by(More)
Essential genes are indispensable to the viability of an organism. Identification and analysis of essential genes is key to understanding the systems level organization of living cells. On the other hand, the ability to predict these genes in pathogens is of great importance for directed drug development. Global analysis of protein interaction networks(More)