Hirotada Mori

Learn More
We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions(More)
Based on the genomic sequence data of Escherichia coli K-12 strain, we have constructed a complete set of cloned individual genes encoding Histidine-tagged proteins with or without GFP fused for functional genomic analysis. Each clone encodes a protein of predicted ORF attached by Histidines and seven spacer amino acids at the N-terminal end, and five(More)
Protein-protein interactions play key roles in protein function and the structural organization of a cell. A thorough description of these interactions should facilitate elucidation of cellular activities, targeted-drug design, and whole cell engineering. A large-scale comprehensive pull-down assay was performed using a His-tagged Escherichia coli ORF clone(More)
The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene(More)
Analysis of cellular components at multiple levels of biological information can provide valuable functional insights. We performed multiple high-throughput measurements to study the response of Escherichia coli cells to genetic and environmental perturbations. Analysis of metabolic enzyme gene disruptants revealed unexpectedly small changes in messenger(More)
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to(More)
With the goal of solving the whole-cell problem with Escherichia coli K-12 as a model cell, highly accurate genomes were determined for two closely related K-12 strains, MG1655 and W3110. Completion of the W3110 genome and comparison with the MG1655 genome revealed differences at 267 sites, including 251 sites with short, mostly single-nucleotide,(More)
We have systematically examined the mRNA profiles of 36 two-component deletion mutants, which include all two-component regulatory systems of Escherichia coli, under a single growth condition. DNA microarray results revealed that the mutants belong to one of three groups based on their gene expression profiles in Luria-Bertani broth under aerobic(More)
DNA microarray covering the whole genome of Staphylococcus aureus strain N315 was prepared to investigate transcription profiles. The microarray analyses revealed that vancomycin induces transcription of 139 genes. Forty-six genes among them failed to be induced in the vraSR null mutant KVR. Part of the genes regulated by VraSR system is associated with(More)
Genome-wide gene essentiality data sets are becoming available for Escherichia coli, but these data sets have yet to be analyzed in the context of a genome scale model. Here, we present an integrative model-driven analysis of the Keio E. coli mutant collection screened in this study on glycerol-supplemented minimal medium. Out of 3,888 single-deletion(More)