Hirosuke Hatayama

Learn More
We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC) and acid-solubilized collagen (ASC) as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0-2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room(More)
We prepared uncleaved gelatin composed mainly of collagen α-, β-, and γ-chains. Gelation and melting of uncleaved gelatin occurred rapidly with moderate decrease and increase in temperature (23°C-37°C). The viability of cells encapsulated in the gelatin gel was greater than 96% after 7 d at 23°C.
In this study, we developed a fabrication method for thick collagen gel bundles comprising uniaxially aligned fibrils of sufficient size for filling defects in ligament tissues. The fabrication involved rotary shearing to dense collagen sols using a rheometer and then warming them from 23°C to 37°C to trigger gelation upon rotation. Gelation due to collagen(More)
Collagen-based 3-D hydrogels often lack sufficient mechanical strength for tissue engineering. We developed a method for fabrication of high-density collagen fibril matrix (CFM) gels from concentrated solutions of uncleaved gelatin (UCG). Denatured random-coil UCG exhibited more rapid and efficient renaturation into collagen triple-helix than cleaved(More)
  • 1