Learn More
OBJECT A brain-machine interface (BMI) offers patients with severe motor disabilities greater independence by controlling external devices such as prosthetic arms. Among the available signal sources for the BMI, electrocorticography (ECoG) provides a clinically feasible signal with long-term stability and low clinical risk. Although ECoG signals have been(More)
In this paper, we present a first series of experiments with prototype artificial whiskers that have been developed in our laboratory. These experiments have been inspired by neuroscience research on real rats. In spite of the enormous potential of whiskers, they have to date not been systematically investigated and exploited by roboticists. Although the(More)
OBJECTIVE Paralyzed patients may benefit from restoration of movement afforded by prosthetics controlled by electrocorticography (ECoG). Although ECoG shows promising results in human volunteers, it is unclear whether ECoG signals recorded from chronically paralyzed patients provide sufficient motor information, and if they do, whether they can be applied(More)
Static and dynamic handgrip experiments are performed in order to evaluate the effectiveness of utilizing frequency-band wavelet analysis in measuring force and muscle fatigue simultaneously. SEMG signals are recorded from flexor muscle and analyzed using continuous wavelet transform (CWT). The wavelet coefficients are grouped into high frequency (65Hz -(More)
This paper describes a new real-time learning method for the development of a robust motion discriminating method from an EMG signal, to adjust to the change in user's characteristics. This method is done under the assumptions that the input motions are continuous, and the teaching motions are ambiguous in nature, therefore, automatic addition, elimination(More)
This paper describes an electrically powered prosthetic system controlled by electromyog-raphy (EMG) signal detected from the skin surface of the human body. The research of electrically powered prosthetic systems is divided into two main subjects. One is the design of the joint mechanism. We propose the use of an adaptive joint mechanism based on the(More)