Learn More
We previously found that SNF2, a gene encoding a transcription factor forming part of the SWI/SNF (switching/sucrose non-fermenting) chromatin-remodelling complex, is involved in lipid accumulation, because the Deltasnf2 disruptant of Saccharomyces cerevisiae has a higher lipid content. The present study was conducted to identify other factors that might(More)
In an effort to produce ricinoleic acid (12-hydroxy-octadeca-cis-9-enoic acid: C18:1-OH) as a petrochemical replacement in a variety of industrial processes, we introduced Claviceps purpurea oleate ∆12-hydroxylase gene (CpFAH12) to Schizosaccharomyces pombe, putting it under the control of inducible nmt1 promoter. Since Fah12p is able to convert oleic acid(More)
Triglycerides (TG) are major storage lipids for eukaryotic cells. In this study, we characterized three genes of fission yeast Schizosaccharomyces pombe, SPCC1450.16c, SPAC1786.01c, and SPAC1A6.05c, that show high homology to Saccharomyces cerevisiae TG lipase genes, TGL3, TGL4, and TGL5. Deletion of each gene increased TG content by approximately 1.7-fold(More)
We isolated a cDNA clone with homology to known desaturase genes from Oblongichytrium sp., recently classified as a new genus of thraustochytrids (Labyrinthulomycetes), and found that it encoded Delta5-desaturase by its heterologous expression in yeast. The enzyme had higher activity toward 20:4n-3 than 20:3n-6, indicating that this Delta5-desaturase can be(More)
hSGT1 (human suppressor of Gcr two) was isolated as a suppressor gene of the gcr2 mutation. Since Gcr2p is a key regulatory factor of glycolytic gene expression in Saccharomyces cerevisiae, hSGT1 is a candidate for a novel human transcription factor involved in carbohydrate metabolism. SGT1 appears to be conserved from Schizosaccharomyces pombe to human but(More)
Lipid production by Saccharomyces cerevisiae was improved by overexpression of the yeast diacylglycerol acyltransferase Dga1p lacking the N-terminal 29 amino acids (Dga1∆Np), which was previously found to be an active form in the ∆snf2 mutant. Overexpression of Dga1∆Np in the ∆snf2 mutant, however, did not increase lipid content as expected, which prompted(More)
Two clones with homology to known fatty acid desaturase genes were isolated from the yeast Kluyveromyces lactis. The first gene, which we designate KlFAD2, consists of 411 amino acids with an overall identity of 73.0% to FAD2 from Saccharomyces kluyveri. It exhibited Delta12 fatty acid desaturase activity when expressed in S. cerevisiae under the control of(More)
Screening of the homozygous diploid yeast deletion pool of 4741 non-essential genes identified two null mutants (Deltaura7 and Deltagal6) that grew faster than the wild-type strain in medium containing 8% v/v ethanol. The survival rate of the gal6 disruptant in 10% ethanol was higher than that of the wild-type strain. On the other hand, the glucose(More)
Recently, many genes involved in the formation of unsaturated and polyunsaturated fatty acids (PUFAs) were isolated. In most cases, their activities were confirmed by expressing them in the well-studied model organism Saccharomyces cerevisiae because its fatty acid compositions are very simple and it does not contain PUFAs. Taking advantage of its genetic(More)
Saccharomyces cerevisiae produces saturated and monounsaturated fatty acids of 16- and 18-carbon atoms and no polyunsaturated fatty acids (PUFAs) with more than two double bonds. To study the biological significance of PUFAs in yeast, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase (KlFAD2) and omega3 fatty acid desaturase (KlFAD3) genes(More)