Hiroshi Tomozawa

Learn More
Murine senile [apolipoprotein A-II amyloid (AApoAII)] and reactive [protein A amyloid (AA)] amyloidosis are reported to be transmissible diseases via a seeding mechanism similar to that observed in the prion-associated disorders, although de novo amyloidogenesis and the progression of AApoAII or AA amyloidosis remain unclear. We examined the effect of(More)
MES is a rat strain that spontaneously develops severe blood eosinophilia as a hereditary trait. Herein, we report that eosinophilia in MES rats is caused by a loss-of-function mutation in the gene for cytochrome b(-245), alpha polypeptide (Cyba; also known as p22(phox)), which is an essential component of the superoxide-generating NADPH oxidase complex.(More)
Hematological and genetic characteristics of newly found eosinophilic rats were studied. Hematologically, high blood eosinophil counts started at 6 weeks of age. Almost all 10-week-old rats had eosinophilia with individual counts above 500/microliter and 5 to 100 times the normal level. Proliferating eosinophils had normal morphology. An increase in(More)
AA amyloidosis is one of the principal causes of morbidity and mortality in captive cheetahs (Acinonyx jubatus), which are in danger of extinction, but little is known about the underlying mechanisms. Given the transmissible characteristics of AA amyloidosis, transmission between captive cheetahs may be a possible mechanism involved in the high incidence of(More)
In mice, apolipoprotein A-II (apoA-II) self-associates to form amyloid fibrils (AApoAII) in an age-associated manner. We postulated that the two most important factors in apoA-II amyloidosis are the Apoa2(c) allele, which codes for the amyloidogenic protein APOA2C (Gln5, Ala38) and transmission of amyloid fibrils. To characterize further the contribution of(More)
Amyloidosis describes a group of protein folding diseases in which amyloid proteins are abnormally deposited in organs and/or tissues as fine fibrils. Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (apoA-II) deposits as amyloid fibrils (AApoAII) and can be transmitted from one animal to another both by the feces and milk excreted by(More)
Patients on long-term hemodialysis can develop dialysis-related amyloidosis (DRA) due to deposition of beta(2)-microglobulin (beta(2)m) into amyloid fibrils (Abeta(2)M). Despite intensive biochemical studies, the pathogenesis of amyloid deposition in DRA patients remains poorly understood. To elucidate the mechanisms that underlie Abeta(2)M fibril formation(More)
Senescence-Accelerated Mouse (SAM) strains are used as animal models for gerontological research. Here, we report that the SAMR1 strain, which shows a high sensitivity to toxicity of the parasiticide ivermectin, has a spontaneous retroviral insertional mutation in the ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a) gene. This mutation is(More)
The Matsumoto Eosinophilia Shinshu (MES) rat strain develops hereditary blood eosinophilia and eosinophil-related inflammatory lesions in organs due to the mutant Cyba(mes) gene. We hypothesized that a new eosinophilia model with a different phenotype could be established by changing the genetic background of rats. We bred and characterized a congenic(More)
The Matsumoto Eosinophilia Shinshu (MES) rat strain develops hereditary blood eosinophilia due to the mutant Cyba(mes) gene. In contrast, BN.MES-Cyba(mes) congenic rats, in which the mutant Cyba(mes) gene introduced into the background of the BN strain, have a normal blood eosinophil level despite showing robust proliferation of eosinophils in the bone(More)