Learn More
Despite long-standing interest, the molecular mechanisms underlying the establishment of anterior-posterior (AP) polarity remain among the unsolved mysteries in metazoans. In the planarians (a family of flatworms), canonical Wnt/beta-catenin signaling is required for posterior specification, as it is in many animals. However, the molecular mechanisms(More)
Etv2 (Ets Variant 2) has been shown to be an indispensable gene for the development of hematopoietic cells (HPCs)/endothelial cells (ECs). However, how Etv2 specifies the mesoderm-generating HPCs/ECs remains incompletely understood. In embryonic stem cell (ESC) differentiation culture and Etv2-null embryos, we show that Etv2 is dispensable for generating(More)
Recent transcriptome analyses have revealed that a large body of noncoding regions of mammalian genomes are actually transcribed into RNAs. Our understanding of the molecular features of these noncoding RNAs is far from complete. We have identified a novel mRNA-like noncoding gene, named Gomafu, which is expressed in a distinct set of neurons in the mouse(More)
The karyotypes of birds, turtles and snakes are characterized by two distinct chromosomal components, macrochromosomes and microchromosomes. This close karyological relationship between birds and reptiles has long been a topic of speculation among cytogeneticists and evolutionary biologists; however, there is scarcely any evidence for orthology at the(More)
Planarians have high regenerative ability, which is dependent on pluripotent adult somatic stem cells called neoblasts. Recently, canonical Wnt/β-catenin signaling was shown to be required for posterior specification, and Hedgehog signaling was shown to control anterior-posterior polarity via activation of the Djwnt1/P-1 gene at the posterior end of(More)
All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and(More)
To achieve an integrated understanding of the stem cell system of planarians at both the cellular and molecular levels, we developed a new method by combining "fluorescent activated cell sorting (FACS) index sorting" analysis and single-cell reverse transcription-polymerase chain reaction (RT-PCR) to detect the gene expression and cell cycle state of stem(More)
Freshwater planarians have a simple and evolutionarily primitive brain structure. Here, we identified the Djsnap-25 gene encoding a homolog of the evolutionarily conserved synaptic protein SNAP-25 from the planarian Dugesia japonica and assessed its role in brain function. Djsnap-25 was expressed widely in the nervous system. To investigate the specific(More)
In the development of most arthropods, the caudal region of the elongating germ band (the growth zone) sequentially produces new segments. Previous work with the spider Cupiennius salei suggested involvement of Delta-Notch signaling in segmentation. Here, we report that, in the spider Achaearanea tepidariorum, the same signaling pathway exerts a different(More)
In newt regeneration, differentiated cells can revert to stem cell-like cells in which the proliferative ability and multipotentiality are restored after dedifferentiation. However, the molecular events that occur during the dedifferentiation still remain obscure. Nucleostemin has been identified in mammals as a nucleolar protein specific to stem cells and(More)