Learn More
Synapse formation requires the differentiation of a functional nerve terminal opposite a specialized postsynaptic membrane. Here, we show that laminin beta2, a component of the synaptic cleft at the neuromuscular junction, binds directly to calcium channels that are required for neurotransmitter release from motor nerve terminals. This interaction leads to(More)
Death pathways restricted to specific neuronal classes could potentially allow for precise control of developmental neuronal death and also underlie the selectivity of neuronal loss in neurodegenerative disease. We show that Fas-triggered death of normal embryonic motoneurons requires transcriptional upregulation of neuronal NOS and involves Daxx, ASK1, and(More)
Cytokines that are related to ciliary neurotrophic factor (CNTF) are physiologically important survival factors for motoneurons, but the mechanisms by which they prevent neuronal cell death remain unknown. Reg-2/PAP I (pancreatitis-associated protein I), referred to here as Reg-2, is a secreted protein whose expression in motoneurons during development is(More)
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in(More)
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents(More)
A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the alpha4, alpha5, and(More)
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active(More)
Synapse formation requires the organization of presynaptic active zones, the synaptic vesicle release sites, in precise apposition to postsynaptic neurotransmitter receptor clusters; however, the molecular mechanisms responsible for these processes remain unclear. Here, we show that P/Q-type and N-type voltage-dependent calcium channels (VDCCs) play(More)
The cytoskeletal matrix of the active zone and synaptic voltage-dependent calcium channels (VDCCs) are both necessary components for the organization and regulation of synaptic vesicle release. In this study, we report a novel interaction between the cytoskeletal matrix of the active zone protein, ELKS1b, and the VDCC subunit, β4, in the molecular layer of(More)
Axons and dendrites of developing neurons establish distributed innervation patterns enabling precise discrimination in sensory systems. We describe the role of the extracellular matrix molecule, laminin beta2, interacting with the Ca(V)2.2 calcium channel in establishing appropriate sensory innervation. In vivo, Ca(V)2.2 is expressed on the growth cones of(More)