Hiroshi Nagase

Learn More
The matrix metalloproteinases (MMPs) play a key role in the normal physiology of connective tissue during development, morphogenesis and wound healing, but their unregulated activity has been implicated in numerous disease processes including arthritis, tumor cell metastasis and atherosclerosis. An important mechanism for the regulation of the activity of(More)
Matrix metalloproteinases (MMPs), also called matrixins, function in the turnover of extracellular matrix components. These enzymes are considered to play important roles in embryo development, morphogenesis and tissue remodeling, and in diseases such as arthritis, periodontitis, glomerulonephritis, atherosclerosis, tissue ulceration, and in cancer cell(More)
We examined somatic mutations of the adenomatous polyposis coli (APC) gene in 63 colorectal tumors (16 adenomas and 47 carcinomas) developed in familial adenomatous polyposis (FAP) and non-FAP patients. In addition to loss of heterozygosity (LOH) at the APC locus in 30 tumors, 43 other somatic mutations were detected. Twenty-one of them were point(More)
The kappa-receptor selectivity of nor-binaltorphimine (nor-BNI), a highly selective kappa-opioid receptor antagonist in vitro, was examined in vivo by measuring the time course of the antagonistic action of nor-BNI (5 and 20 mg/kg, s.c.) against the responses to U-50488H (10 mg/kg, s.c.), morphine (10 mg/kg, s.c.) and fentanyl (50 micrograms/kg, s.c.) in(More)
Matrix metalloproteinase 9 (MMP-9), also known as 92-kDa gelatinase/type IV collagenase, is secreted from neutrophils, macrophages, and a number of transformed cells in zymogen form. Here we report that matrix metalloproteinase 3 (MMP-3/stromelysin) is an activator of the precursor of matrix metalloproteinase 9 (proMMP-9). MMP-3 initially cleaves proMMP-9(More)
Matrix metalloproteinases (MMPs) are zinc endopeptidases that are required for the degradation of extracellular matrix components during normal embryo development, morphogenesis and tissue remodelling. Their proteolytic activities are precisely regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in(More)
Matrix metalloproteinase-9 (MMP-9) may play a critical catalytic role in tissue remodeling in vivo, but it is secreted by cells as a stable, inactive zymogen, pro-MMP-9, and requires activation for catalytic function. A number of proteolytic enzymes activate pro-MMP-9 in vitro, but the natural activator(s) of MMP-9 is unknown. To examine MMP-9 activation in(More)
The proteoglycan aggrecan is an important major component of cartilage matrix that gives articular cartilage the ability to withstand compression. Increased breakdown of aggrecan is associated with the development of arthritis and is considered to be catalyzed by aggrecanases, members of the ADAM-TS family of metalloproteinases. Four endogenous tissue(More)
Effects of buprenorphine, U-50,488H, naltrexone and lithium chloride on cocaine conditioned place preference were examined. Buprenorphine, a mixed opioid agonist-antagonist, blocked the cocaine-induced place preference. Furthermore, the kappa-receptor agonist U-50,488H and the mu-receptor antagonist naltrexone both antagonized the cocaine preference.(More)
Mitochondria take up and extrude various inorganic and organic ions, as well as larger substances such as proteins. The technique of patch clamping should provide real-time information on such transport and on energy transduction in oxidative phosphorylation. It has been applied to detect microscopic currents from mitochondrial membranes and conductances of(More)