Learn More
Photoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each(More)
Abnormal cellular accumulation of the dicarbonyl metabolite MG (methylglyoxal) occurs on exposure to high glucose concentrations, inflammation, cell aging and senescence. It is associated with increased MG-adduct content of protein and DNA linked to increased DNA strand breaks and mutagenesis, mitochondrial dysfunction and ROS (reactive oxygen species)(More)
AIMS Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to(More)
Lateral inhibition resulting from a double-negative feedback loop underlies the assignment of different fates to cells in many developmental processes. Previous studies have shown that the presence of time delays in models of lateral inhibition can result in significant oscillatory transients before patterned steady states are reached. We study the impact(More)
Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN(More)
Oscillatory expression of the Hes family of transcription factors plays a central role in the segmentation of the vertebrate body during embryonic development. Analogous oscillations in cultured cells suggest that Hes oscillations may be important in other developmental processes, and provide an excellent opportunity to explore the origin of these(More)
A computer simulation model for transverse-dune-field dynamics, corresponding to a uni-directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross-sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no(More)
A mathematical formulation is developed to model the dynamics of sand dunes. The physical processes display strong non-linearity that has been taken into account in the model. When assessing the success of such a model in capturing physical features we monitor morphology, dune growth, dune migration and spatial patterns within a dune field. Following recent(More)
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene(More)
The POU-V transcription factor Oct4 is a master regulator of self-renewal and pluripotency in embryonic stem (ES) cells as well as an important regulator of lineage commitment in embryonic development. We have shown that Oct4's ability to regulate self-renewal in ES cells is related to a conserved function in regulating embryonic differentiation in certain(More)