Learn More
During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in(More)
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis).(More)
Outside cells of the preimplantation mouse embryo form the trophectoderm (TE), a process requiring the transcription factor Tead4. Here, we show that transcriptionally active Tead4 can induce Cdx2 and other trophoblast genes in parallel in embryonic stem cells. In embryos, the Tead4 coactivator protein Yap localizes to nuclei of outside cells, and(More)
microRNA-9-2 and microRNA-9-3 double-mutant mice demonstrate that microRNA-9 (miR-9) controls neural progenitor proliferation and differentiation in the developing telencephalon by regulating the expression of multiple transcription factors. As suggested by our previous study, the Foxg1 expression was elevated, and the production of Cajal-Retzius cells and(More)
Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares(More)
During meiosis, homologous chromosome (homolog) pairing is promoted by several layers of regulation that include dynamic chromosome movement and meiotic recombination. However, the way in which homologs recognize each other remains a fundamental issue in chromosome biology. Here, we show that homolog recognition or association initiates upon entry into(More)
The brain is composed of diverse types of neurons that fulfill distinct roles in neuronal circuits, as manifested by the hippocampus, where pyramidal neurons and granule cells constitute functionally distinct domains: cornu ammonis (CA) and dentate gyrus (DG), respectively. Little is known about how these two types of neuron differentiate during hippocampal(More)
The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and(More)
Disrupted-In-Schizophrenia 1 (DISC1) is a promising candidate gene for susceptibility to psychiatric disorders, including schizophrenia. DISC1 appears to be involved in neurogenesis, neuronal migration, axon/dendrite formation and synapse formation; during these processes, DISC1 acts as a scaffold protein by interacting with various partners. However, the(More)
During pre-implantation mouse development, embryos form blastocysts with establishment of the first two cell lineages: the trophectoderm (TE) which gives rise to the placenta, and the inner cell mass (ICM) which will form the embryo proper. Differentiation of TE is regulated by the transcription factor Caudal-related homeobox 2 (Cdx2), but the mechanisms(More)