Learn More
We experimentally confirmed that the spin-orbit lengths of noble metals obtained from weak antilocalization measurements are comparable to the spin diffusion lengths determined from lateral spin valve ones. Even for metals with strong spin-orbit interactions such as Pt, we verified that the two methods gave comparable values which were much larger than(More)
The non-local spin injection in lateral spin valves is strongly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin-valve voltage, which determines the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 μV. Here we show that(More)
Devices based on pure spin currents have been attracting increasing attention as key ingredients for low-dissipation electronics. To integrate such spintronics devices into charge-based technologies, electric detection of spin currents is essential. The inverse spin Hall effect converts a spin current into an electric voltage through spin-orbit coupling.(More)
Non-local spin injection in lateral spin valves generates a pure spin current which is a diffusive flow of spins (i.e. spin angular momentums) with no net charge flow. The diffusive spins lose phase coherency in precession while undergoing frequent collisions and these events lead to a broad distribution of the dwell time in a transport channel between the(More)
  • 1