Hiromi Tajima

Learn More
Intracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either(More)
Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely(More)
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S(More)
The desert shrub Leptadenia pyrotechnica (Forssk.) Decne (Asclepiadaceae) is an important multipurpose woody species of tropical and sub-tropical arid regions. The shrub’s excellent pharmacological properties, importance in desert afforestation and role in sand dune fixation has been elaborately studied in recent years which make it a potential candidate(More)
 Green fluorescent protein (GFP)-marked Fusarium oxysporum f. sp. melonis and nonmarked F. oxysporum f. sp. fragariae were stained with neutral red. The neutral red stained vacuoles of the fungi without disturbing GFP fluorescence in the cytoplasm. GFP-marked fungi showed fluorescent hyphae with dark-stained vacuoles, whereas nonmarked fungi were detected(More)
Physiological responses of plants to salinity stress requires the coordinated activation of many genes. A salt-induced gene was isolated from roots of the wild tomato species Solanum chilense and named SchRabGDI1 because it encodes a protein with high identity to GDP dissociation inhibitors of plants. These proteins are regulators of the RabGTPase cycle(More)
Elias Bassil,a Hiromi Tajima,a Yin-Chih Liang,a Masa-aki Ohto,a Koichiro Ushijima,b Ryohei Nakano,b Tomoya Esumi,a Ardian Coku,a Mark Belmonte,c and Eduardo Blumwalda,1 a Department of Plant Sciences, University of California, Davis, California 95616 b Department of Agriculture, Okayama University, Okayama 700-8530, Japan c Department of Biological(More)
  • 1