Hiroko Nomaru

Learn More
BACKGROUND Molecular mechanisms underlying stress tolerance and vulnerability are incompletely understood. The fosB gene is an attractive candidate for regulating stress responses, because ΔFosB, an alternative splice product of the fosB gene, accumulates after repeated stress or antidepressant treatments. On the other hand, FosB, the other alternative(More)
We examined the expression of galectin-1, an endogenous lectin with one carbohydrate-binding domain, in the adult mouse hippocampus after systemic kainate administration. We found that the expression of galectin-1 was remarkably increased in activated astrocytes of the CA3 subregion and dentate gyrus of the hippocampus, and in nestin-positive neural(More)
Patients with epilepsy are at high risk for major depression relative to the general population, and both disorders are associated with changes in adult hippocampal neurogenesis, although the mechanisms underlying disease onset remain unknown. The expression of fosB, an immediate early gene encoding FosB and ΔFosB/Δ2ΔFosB by alternative splicing and(More)
The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset(More)
Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) (MALDI-IMS) provides a technical means for simultaneous analysis of precise anatomic localization and regulation of peptides. We explored the technical capability of matrix-assisted laser desorption ionization mass spectrometry for characterization of peptidomic regulation(More)
Galectin-1 (gal-1) is one of several well-studied proteins from the galectin families. It is a 14.5 kDa glycoprotein with a single carbohydrate-binding domain. To examine the distribution and properties of gal-1 in the mouse hippocampus, we performed immunohistochemistry using an anti-gal-1 antibody. We found that most gal-1-positive cells showed both NeuN(More)
  • 1