Hiroko Komiyama

Learn More
We investigated the effect of TTC-909, a drug preparation of the stable prostaglandin I(2) analogue clinprost (isocarbacyclin methylester; methyl 5-[(1S,5S,6R,7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl] bicyclo[3.3.0]oct-2-en-3-yl] pentanoate) incorporated into lipid microspheres, on cerebral infarction 7 days after permanent occlusion of the middle(More)
To clarify whether hypercalcemia after injection of Pb to rats is due to biological bone resorption or physicochemical mineral dissolution, the effect of lead (Pb) on release of previously incorporated 45Ca in organ culture was investigated. Pb at 50 microM and above stimulated the release of 45Ca and hydroxyproline (Hyp). Pb did not stimulate 45Ca release(More)
We investigated the effect of TTC-909, a preparation of the stable prostaglandin I(2) analogue clinprost (isocarbacyclin methylester; methyl 5-[(1S,5S,6R,7R)-7-hydroxy-6-[(E)-(S)-3-hydroxy-1-octenyl] bicyclo[3.3.0]oct-2-en-3-yl] pentanoate) incorporated into lipid microspheres, on infarct volume 24 h after photochemically induced thrombotic occlusion of the(More)
To examine an effect of lead (Pb) on the process of osteoclast-like cell formation from its progenitors, we used a mouse bone marrow culture system in which osteoclast-like multinucleated cells (MNCs) were formed in response to bone-resorbing agents. In a 9-day culture period, Pb dose-dependently stimulated MNC formation over the concentration range 2–10(More)
Two fluoro analogs of 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24a-homo-24,24-difluoro-1 alpha,25-dihydroxyvitamin D3 [24aF2-homo-1,25(OH)2D3], and 26,27-dimethyl-24,24-difluoro-1 alpha,25-dihydroxyvitamin D3 [24F2-1,25(OH)2(Me)2D3] were examined for calcium (Ca)-regulating activity. The objective of the present study was to determine whether or not(More)
Bone-resorbing activities of 24-epi-1 alpha-hydroxyvitamin D2 [24-epi-1 alpha(OH)D2], 24-epi-1 alpha,25-dihydroxyvitamin D2 [24-epi-1,25(OH)2D2], and 1 alpha,24S,25-trihydroxyvitamin D2 [1,24S,25(OH)3D2], which might be a metabolite of 24-epi-1,25(OH)2D2, were investigated. In an in vitro bone resorption test, the activity of 24-epi-1 alpha(OH)D2 was(More)
To determine the possibility that methyl substitution in 26- and 27-positions of 24R,25-dihydroxyvitamin D3 [24,25(OH)2D3] alters activities of the original compound, the effects of 24,25(OH)2D3 on calcium (Ca) regulating activity were compared with those of its methyl analog [24,25(OH)2(CH3)2D3] in addition to 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3].(More)
Two fluoro analogs of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24a-homo-24,24-difluoro-1α,25-dihydroxyvitamin D3 [24aF2-homo-1,25(OH)2D3], and 26,27-dimethyl-24,24-difluoro-1α,25-dihydroxyvitamin D3 [24F2-1,25(OH)2(Me)2D3] were examined for calcium (Ca)-regulating activity. The objective of the present study was to determine whether or not fluoro(More)
Bone-resorbing activities of 24-epi-1α-hydroxyvitamin D2 [24-epi-1α(OH)D2], 24-epi-1α,25-dihydroxyvitamin D2 [24-epi-1,25(OH)2D2], and 1α,24S,25-trihydroxyvitamin D2 [1,24S,25(OH)3D2], which might be a metabolite of 24-epi-1,25(OH)2D2, were investigated. In an in vitro bone resorption test, the activity of 24-epi-1α(OH)D2 was similar to that of(More)
  • 1