Hiroki Inoue

Learn More
Dysfunctions of primary cilia and cilia-derived sensory organelles underlie a multitude of human disorders, including retinal degeneration, yet membrane targeting to the cilium remains poorly understood. Here, we show that the newly identified ciliary targeting VxPx motif present in rhodopsin binds the small GTPase Arf4 and regulates its association with(More)
Recent evidence suggests that endoplasmic reticulum (ER) tubules mark the sites where the GTPase Drp1 promotes mitochondrial fission via a largely unknown mechanism. Here, we show that the SNARE protein syntaxin 17 (Syn17) is present on raft-like structures of ER-mitochondria contact sites and promotes mitochondrial fission by determining Drp1 localization(More)
The environmental estrogen bisphenol A, orally introduced into the body, passes through the liver and modulates the endocrine system to elicit irreversible changes in the functioning of reproduction. To elucidate the actual and dynamic metabolism of bisphenol A in the liver before its arrival at target organs, this study evaluated the metabolism and(More)
Gout based on hyperuricemia is a common disease with a genetic predisposition, which causes acute arthritis. The ABCG2/BCRP gene, located in a gout-susceptibility locus on chromosome 4q, has been identified by recent genome-wide association studies of serum uric acid concentrations and gout. Urate transport assays demonstrated that ABCG2 is a high-capacity(More)
Membrane trafficking and remodeling of the actin cytoskeleton are critical activities contributing to cellular events that include cell growth, migration and tumor invasion. ADP-ribosylation factor (Arf)-directed GTPase activating proteins (GAPs) have crucial roles in these processes. The Arf GAPs function in part by regulating hydrolysis of GTP bound to(More)
ABCG2, also known as BCRP, is a high-capacity urate exporter, the dysfunction of which raises gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate 'overproduction type' and/or 'underexcretion type' based solely on renal urate excretion, without considering an extra-renal pathway. Here we show that decreased extra-renal urate(More)
BACKGROUND Bisphenol A (BPA), a well-known endocrine disruptor, is highly glucuronidated in the liver, and the resultant BPA-glucuronide (BPA-GA) is excreted primarily into bile. However, in rodents, prenatal exposure to low doses of BPA can adversely affect the fetus, despite the efficient drug-metabolizing systems of the dams. The transport mechanisms of(More)
In male rats challenged with the environmental estrogen bisphenol A, the compound is highly glucuronidated in the liver and is excreted largely into the bile. Given that in pregnancy the microsomal glucuronidation toward bisphenol A is attenuated, we hypothesized that elimination of bisphenol A from the liver may be reduced in pregnancy. This study was(More)
Influenza is an infectious disease caused by the influenza virus, and each year many people suffer from this disease. Hemagglutinin (HA) in the membrane of type A influenza viruses recognizes sialylglycoconjugate receptors on the host cell surface at an initial step in the infection process; consequently, HA inhibitors are considered potential candidates(More)
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One(More)