Learn More
Parkinson's disease is characterized by degeneration of nigral dopaminergic neurons, leading to a wide variety of psychomotor dysfunctions. Accumulated evidence suggests that abnormally synchronized oscillations in the basal ganglia contribute to the expression of Parkinsonian motor symptoms. However, the mechanism that generates abnormal oscillations in a(More)
Diffusion-weighted MRI of non-human primates revealed that USPIO Bulk Magnetic Susceptibility (BMS) T2' effects of Ultrasmall Superparamagnetic Particles with Iron Oxide (USPIO) in the brain cannot be explained by a single compartment model, as diffusion and T2' effects appear coupled: Apparent Diffusion Coefficient (ADC) values depend on USPIO(More)
Subcortical nuclei are increasingly targeted for deep brain stimulation (DBS) and for gene transfer to treat neurological and psychiatric disorders. For a successful outcome in patients, it is critical to place DBS electrodes or infuse viral vectors accurately within targeted nuclei. However current MRI approaches are still limited to localize brainstem and(More)
The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of(More)
Remarkable effectiveness of deep brain stimulation (DBS) for Parkinson's disease (PD) has occupied the interest of many scientists and their efforts for elucidating its mechanism have given us a lot of clues for understanding of pathophysiology of PD. The early idea that DBS inhibits neuronal activity of the stimulated nucleus was based on the observation(More)
During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor(More)
  • 1