Hirofumi Miyazaki

Learn More
BACKGROUND Exposure to risk factors such as hypertension or hypercholesterolemia decreases the bioavailability of endothelium-derived nitric oxide (NO) and impairs endothelium-dependent vasodilation. Recently, a circulating endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), has been detected in human plasma. The purpose of this study was(More)
Transient global ischemia causes neurogenesis in the dentate gyrus of adult rodents. Ischemic insults to rodents also induce cyclooxygenase-2 (COX-2), an isoform of cyclooxygenases (COXs) and a rate-limiting enzyme for prostanoid synthesis. In the present experiments, adult Mongolian gerbils were chronically treated with acetylsalicylic acid (ASA), a(More)
Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a(More)
Hyperalgesia results from a decreased pain threshold, often subsequent to peripheral tissue damage. Recent reports revealed several promising mechanisms of hyperalgesia, but many issues remain unclear. The glial activation accompanying inflammation of neurotransmission in the spinal cord might be related to the initiation and maintenance of hyperalgesia.(More)
Fatty acid binding protein 7 (FABP7) expressed by astrocytes in developing and mature brains is involved in uptake and transportation of fatty acids, signal transduction, and gene transcription. Fabp7 knockout (Fabp7 KO) mice show behavioral phenotypes reminiscent of human neuropsychiatric disorders such as schizophrenia. However, direct evidence showing(More)
Fatty-acid-binding proteins (FABPs) are key intracellular molecules involved in the uptake, transportation and storage of fatty acids and in the mediation of signal transduction and gene transcription. However, little is known regarding their expression and function in the oligodendrocyte lineage. We evaluate the in vivo and in vitro expression of FABP5 and(More)
  • 1